Physik: Krümmung der Raumzeit

Gehört zu: Physik
Siehe auch: Relativitätstheorie, Vektorraum, Gravitation, Schwarze Löcher, Metrik, Koordinatensysteme

Krümmung der Raumzeit

Die Allgemeine Relativitätstheorie (ART) basiert auf dem Postulat der Äquivalenz von Gravitation und Beschleunigung.

Aus diesem Äquivalenzprinzip ergibt sich die Lichtablenkung in Gravitationsfeldern.

Wenn man trotzdem davon ausgehen möchte, dass das Licht immer den kürzesten Weg nimmt, muss die Gravitation den Raum (besser die Raumzeit) entsprechend krümmen, sodass eine Metrik entsteht bei der der kürzeste Weg zwischen zwei Punkten nicht unbedingt die Euklidische gerade Linie ist.

Wir wollen hier zunächsteinmal den Begriff der “Krümmung” ganz allgemein diskutieren.

Umgangssprachlich denkt man bei “Krümmung”, dass sich etwas in eine zusätzliche Dimension krümmt (s.u. die vielen Beispiele). Bei der von Einstein postulierten Krümmung der vierdimensionalen Raumzeit wird aber für diese Krümmung keine 5. Dimension gebraucht. Die vierdimensionale Raumzeit ist nach Einstein  “in sich” gekrümmt; d.h. wir haben einen anderen Abstandsbegriff (eine andere Metrik, ein anderes Linienelement).

Krümmung bei Euklidischer Metrik

Unter der Krümmung eines geometrischen Objekts versteht man die Abweichung von einem geraden Verlauf; dazu bedarf es (mindestens) einer weiteren Dimension in die die Krümmung verläuft oder der Begriff “gerade” muss umdefiniert werden. Eine Kurve verläuft “gerade” wenn beim Durchlaufen mit konstanter Geschwindigkeit, keine Beschleunigungen “seitwärts”, sonder höchstens in der Normalen auftreten.

Wir betrachten eine Gerade. Solange sie wirklich geradeaus verläuft ist sie nicht gekrümmt. Wenn sie eine Kurve nach links (oder rechts) macht, haben wir eine Krümmung – und wir brauchen dafür (mindestens) eine zweite Dimension. Die Stärke der Krümmung kann mehr oder weniger sanft oder kräftiger sein. Wir messen die Stärke der Krümmung an einer Stelle durch einen sog. Krümmungskreis. Das ist ein Kreis, der sich in dem betrachteten Punkt am besten an die Kurve anschmiegt. Ein großer Krümmungskreis bedeutet eine kleine Krümmung ein kleiner Krümmungskreis ein starke Krümmung. Der Kehrwert des Radius ist das Maß für die Krümmungsstärke.

Die andere Frage ist, welche geometrischen Objekte sind es, die da “gekrümmt” werden?  Im einfachsten Fall ist es eine eindimensionale Linie in einer zweidimensionalen Ebene; also z.B. ein Funktionsgraph oder eine sog. Kurve. Kurven sind in diesem Zusammenhang sehr interessant als Teilmenge eines Vektorraums, die durch eine Abbildung von einem reellen Intervall in den Vektorraum  als sog. “parametrisierte” Kurve dargestellt werden kann. Das “Umparametrisieren” ist dann eine Äquivalenzrelation zwischen parametrisierten Kurven. Eine “Kurve” kann dann als Äquivalenzklasse solcher parametrisierten Kurven verstanden werden. Als Repräsentant einer Äquivalenzklasse nimmt man dann gerne eine nach Bogenlänge parametrisierte Kurve.

Wenn wir uns mit Kurven beschäftigen und speziell dann mit der Länge einer Kurve oder der Krümmung von Kurven, haben wir es mit Differentialgeometrie zu tun.
Dazu gibt es eine Reihe von sehr schönen Youtube-Videos:

Schritt 1: Krümmung einer Linie in der Ebene

Wenn das betrachtete Objekt ein Funktionsgraph von beispielsweise y = f(x) in der Ebene ist, können wir die Krümmung leicht berechnen:

Für eine zweimal differenzierbare Funktion  y = f(x) ergibt sich der Krümmungsradius an einem Punkt x zu:

\( \Large  r(x) = \left\vert \frac{(1+(f^\prime(x))^2)^\frac{3}{2}}{f^{\prime\prime}(x)} \right\vert  \)

Als Beispiel nehmen wir mal eine Parabel f(x) = 0,5 * x2
Dazu haben wir die Ableitungen:
f(x) = x
f(x) = 1
Der Krümmungsradius beispielsweise am Punkt x0 = 0 beträgt dann laut obiger Formel:

\( \Large r(x_0) = \frac{(1+{x_0}^2)^{\frac{3}{2}}}{1} = 1 \\\ \)

Und zur Probe nehmen wir noch x=1:

\( \Large r(1) = \frac{(1+1^2)^{\frac{3}{2}}}{1} = 2^\frac{3}{2} = 2 \sqrt{2} \)

Dieses Beispiel habe ich entnommen aus https://www.ingenieurkurse.de/hoehere-mathematik-analysis-gewoehnliche-differentialgleichungen/kurveneigenschaften-im-ebenen-raum/kruemmung/kruemmungsradius.html
Es wird grafisch veranschaulicht durch:

Schritt 2: Krümmung einer Kurve in der Ebene

Wenn das betrachtete Objekt eine “richtige” Kurve in der Ebene ist, wird die Krümmung anders berechnet.

Als “richtige” Kurve (in der Ebene) betrachten wir von der obigen Parabel das Kurvenstück von x=-1 bis x=1. Als Parametrisierte Kurve, wobei der Parameter t auch von -1 bis 1 laufen möge, (was wir uns z.B. als Zeit vorstellen könnten) sieht das dann so aus:

\( \Large \alpha(t) = \left( \begin{array}{c} t \\\ \frac{1}{2}t^2  \end{array}\right)  \\\  \)

Um die Krümmung zu brechnen ermitteln wir zuerst:

\( \Large \alpha^\prime(t) = \left( \begin{array}{c} 1 \\\ t  \end{array}\right)  \)

womit dann:

\( \Large ||\alpha^\prime(t)||^2 =  1 +  t^2   \\\  \)

und mit:

\( \Large \alpha^{\prime\prime}(t) = \left( \begin{array}{c}  0 \\\ 1  \end{array}\right)  \)

ergibt sich:

\( \Large det(\alpha^\prime(t), \alpha^{\prime\prime}(t)) = 1  \\\ \)

und damit ergibt sich dann die Krümmung zu:

\( \Large \kappa_\alpha(t) = \frac{1}{(1 + t^2 )^\frac{3}{2}}  \)

Bei t=0 ist dann die Krümmung:

\( \Large \kappa_\alpha(0) = 1 \\\  \)

und zur Probe nehmen wir noch t=1:

\( \Large \kappa_\alpha(1) = \frac{1}{2 \sqrt{2}} \\\ \)

Weil t=x ist, stimmt das mit den Berechnungen des Krümmungsradius (s.o. Schritt 1) exakt überein.

Schritt 3: Krümmung einer Fläche im Raum

Analog können wir uns gekrümmte Flächen im Raum vorstellen. Hier kann allerdings der Krümmungsradius in unterschiedlichen Richtungen unterschiedlich sein. Inetwa so die wir das von einem Gradienten kennen.

Auch in diesem Fall stellen wir uns das ganz klassisch geometrisch vor als Krümmung in eine weitere Dimension.

Krümmung per Nicht-Euklidischer Metrik

In der Allgemenen Relativitätstheorie spricht man auch von “Krümmung” z.B. Krümmung des Raumes oder Krümmung der Raumzeit.

Hier basiert die “Krümmung” nicht auf einer zusätzlichen Dimension, sondern auf einer speziellen Metrik in ein und demselben Raum. Unter “Metrik” versteht man ja eine Vorschrift, die zwei Punkten in dem betreffenden Raum einen Abstand zuordnet.  So eine Metrik definiert dann auch automatische die Längen von Linien…

Geodätische Linie

Die Linie, die die kürzeste Verbindung zwischen zwei Punkten bildet, nennt man Geodät oder auch Geodätische LInie. Auf der Erdoberfläche kennen wir das z.B. bei der Seefahrt oder Luftfahrt wenn wir beispielsweise die Flugroute von London nach Los Angeles betrachten:

Geodätische LInie Moskau - Los Angeles

Das Licht läuft immer auf einer Geodäte, nimmt also die kürzeste Verbindung. Das kann “gekrümmt” aussehen…

Krümmung ohne zusätzliche Dimension

Für eine solche Krümmung benötigen wir aber nicht zwingend eine zusätzliche Dimension. Die Krümmung kann auch “in sich” durch andere Abstandsgesetze (= Metriken) bewirkt werden.
Siehe Schwarzschild-Metrik

 

Physik: Magnetisches Feld

Gehört zu: Physik
Siehe auch: Elektrisches Feld, Vektorraum, SI-Einheiten

Das Magnetische Feld

Analogie zum Elektrischen Feld

Schon seit Jahrhunderten kennt man den Kompass, dessen Magnetnadel sich in die Richtung des Magnetfeldes der Erde ausrichtet.

Ein “Magnet” erzeugt ein Magnetfeld. Wenn ich in ein solches Magnetfeld einen kleinen “Probemagneten” einbringe, so übt das magnetische Feld eine magnetische Kraft auf diesn kelinen “Probemagneten” aus…
Dann hätte man in Analogie zum elektrischen Feld:

Magnetische Feldstärke = Magnetische Kraft /  Magnetische Probeladung

Magnetfelder können verursacht werden durch:

  • magnetische Materialien, etwa einen Dauermagneten,
  • elektrische Ströme, z. B. eine stromdurchflossene Spule oder
  • zeitliche Änderung eines elektrischen Feldes.

Die Definition eines magnetischen Feldes \( \vec{B} \) kann man durch folgende Formel erreichen:

\( \vec{F} = q \cdot \vec{v} \times \vec{B} \)

Dabei bewegt sich eine elektrische Ladung (q) mit der Geschwindigkeit \( \vec{v} \) und erfährt eine Kraft von \( \vec{F} \), die durch das Magnetfeld \( \vec{B} \) hervorgerufen wird.

Historisch gesehen gibt es den Begriff der “Feldstärke” beim Magnetfeld nicht. Wir haben aber eine Größe “Magnetische Flußdichte”, die soetwas ähnliches ist.

Eine besonders einfache Situation ist ein gerader elektrischer Leiter, der von einem konstanten elektrischen Strom durchflossen wird – das wurde schon von Hans Christian Oersted (1777-1851) untersucht. Für einen Strom der Stärke I durch den Leiter bekommen wir im Abstand r ein Magnetfeld von:

\( \vec{B} = \Large \frac{\mu \cdot I}{2 \pi \cdot r} \)

Fragen / Probleme

  • in welchen Masseinheiten misst man ein Magnetfeld  (Tesla, Gauß,…) ?
  • Eigentlich haben wir nur magnetische Dipole

Die sog. Lorentzkraft – Elektromagnetismus

Auf eine mit der Geschwindigkeit v bewegte elektrische Ladung q wirkt im elektromagnetischen Feld eine Kraft. Für diese sog. Lorentzkraft haben wir die Formel:

\( \vec{F} = q \cdot (\vec{E} + (\vec{v} \times \vec{B})) \)

Wo bei E die elektrische Feldstärke und B die magnetische Feldstärke (historisch: Flussdichte) sind.

Und dann gibt es noch einen Dynamo und ein Induktionsgesetz….

 

 

Physik: Elektrische Felder – Coulomb

Gehört zu: Elektrodynamik
Siehe auch: Gravitation, Magnetisches Feld, Vektoren, SI-System, Niels Bohr
Benutzt: WordPress-Plugin Latex

Stand: 22.08.2021

Ruhendes Elektrisches Feld

In der Elektrostatik werden ruhende und zeitlich unveränderliche Elektrische Felder beschrieben.

Die physikalische Größe elektrische Feldstärke (E) beschreibt die Stärke und Richtung eines elektrischen Feldes, also die Fähigkeit dieses Feldes, Kraft (F) auf Ladungen (q) auszuüben. Sie ist ein Vektor und ist in einem gegebenen Punkt definiert durch:

\( \Large \vec{E} =  \frac{\vec{F}}{q} \\\ \)

Die Maßeinheit der Elektrische Feldstärke ist also Newton / Coulomb, was das Gleiche ist wie V / m.

Bewegtes Elektrisches Feld

Laut Wikipedia ist die klassische Elektrodynamik (auch Elektrizitätslehre) das Teilgebiet der Physik, das sich mit bewegten elektrischen Ladungen und mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschäftigt. Die Elektrostatik als Spezialfall der Elektrodynamik beschäftigt sich mit ruhenden elektrischen Ladungen und ihren Feldern. Die zugrundeliegende Grundkraft der Physik heißt elektromagnetische Wechselwirkung.

Analogie: Gravitationsfeld

Analog müssten wir für das Gravitationsfeld einer Punktmasse M die Gravitationskraft (F) durch die “Probemasse” m dividieren, um die “Gravitationsfeldstärke” g zu erhalten:

\( \Large \vec{g} = \frac{\vec{F}}{m} = G \frac{M}{r^2} \\\ \)  (in radialer Richtung)

Diese “Gravitationsfeldstärke” wird aus historischen Gründen “Gravitationsbeschleunigung” genannt.

Analogie: Magnetisches Feld

Auch beim Magnetismus stellt man sich ein Kraftfeld vor: das Magnetische Feld

Elektrostatik: Coulombsches Gesetz

Das Elektrische Feld einer Punktladung q ist:

\( \Large E = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \\\ \) (in radialer Richtung)

Daraus ergibt sich das sog. Coulombsche Gesetz für die Anziehungskraft zweier elektrischer Ladungen:

\( \Large F = \frac{1}{4 \pi \epsilon_0} \frac{q_1 \cdot q_2}{r^2} \\\ \)

Bohrsches Atommodell

Siehe: Niels Bohr

 

Mathematik: Data Science

Gehört zu: Mathematik
Siehe auch: Python

Ein neues Buzzword: Data Science

Öfters habe ich schon Vorlesungen auf dem Youtube-Kanal von Prof. Dr. Weitz von der Hamburger Hochschule für Angewandte Wissenschaften (“HAW” – früher: Fachhochschule Berliner Tor) gehört.

Er arbeitet da mit Computer-Software wie:

  • MATLAB
  • Mathematica, was sehr teuer ist. Kann CDF-Dateien erzeugen, die mit einem CDF Player abgespielt werden können
  • jupyter: Link https://jupyter.org/
  • SymPy: Link https://www.sympy.org/en/index.html
  • GeoGebra Link: https://www.geogebra.org/?lang=de
  • WolframAlpha Link: https://www.wolframalpha.com/
  • p5.js Link: https://editor.p5js.org/
  • Anaconda (zum Installieren von Paketen etc.) Link: https://www.anaconda.com/individual-tutorial?source=win_installer

und anderen.

Herr Weitz unterscheidet sog. Computer Algebra Systeme (abgekürzt CAS) von Numerischen Systemen…

Als Programmiersprache kommt man wohl an JavaScript nicht vorbei, das sich in den letzten Jahren enorm weiterentwickelt hat: z.B. https://eloquentjavascript.net/Eloquent_JavaScript.pdf

 

 

Physik: Wellengleichung

Gehört zu: Physik
Siehe auch: Von Phythagoras bis Einstein, Schroedinger

Stand: 27.9.2024

Die Wellengleichung von D’Alembert

Die Wellengleichung, auch D’Alembert-Gleichung nach Jean-Baptiste le Rond d’Alembert (1717-1783), bestimmt die Ausbreitung von Wellen wie etwa Schall oder Licht.

Wenn das Medium oder Vakuum die Welle nur durchleitet und nicht selbst Wellen erzeugt, handelt es sich genauer um die homogene Wellengleichung, die lineare partielle Differentialgleichung zweiter Ordnung

\(\Large  \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} – \sum \limits_{i=1}^{n} \frac{\partial^2 u}{\partial x^2_i} = 0 \)

für eine reelle Funktion u (t, x1, x2,…,xn) der Raumzeit.

Hierbei bedeutet u die Auslenkung der Welle zur Zeit t am Ort x=(x1, x2,…,xn) und  n die Dimension des Raumes.
Der Parameter c ist die Ausbreitungsgeschwindigkeit der Welle, also bei Schall (im homogenen und isotropen Medium) die Schallgeschwindigkeit und bei Licht die Lichtgeschwindigkeit.

Die eindimensionale Wellengleichung

Im einfachen Fall nur einer Raumdimension (n=1) bekommen wir als Wellengleichung:

\(\Large  \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} –  \frac{\partial^2 u}{\partial x^2} = 0 \\\)

Und als Lösung  für harmonische Schwingungen bekommen wir als Wellenfunktion:

\( u(t,x) = A \sin (2\pi (\frac{c t}{\lambda} – \frac{x}{\lambda})) \\\)

Wobei A die Amplitude und λ die Wellenlänge sein soll.

Manchmal benutzt man auch die sog. Wellenzahl \( k = \frac{1}{\lambda} \).

Eine einfache Lösung der Wellengleichung im eindimensionalen Raum wäre (mit A=1, λ = 2π):

\( u(t,x) = \sin(x + ct) \)

Also eine eindimensionale Wellenfunktion.

Ebene Wellen

Eine ebene Welle ist eine Welle im dreidimensionalen Raum, deren Wellenfronten (d.h. Flächen gleichen Phasenwinkels) parallele Ebenen bilden. Die Ausbreitungsrichtung der Welle steht senkrecht dazu. Diese Richtung ist also räumlich konstant.

Siehe auch: Kugelwelle

Transversal – Longitudinal – Polarisierung

Eine Transversalwelle (Quer-, Schub- oder Scherwelle) ist eine Welle, bei der die Schwingung senkrecht zu ihrer Ausbreitungsrichtung erfolgt. Das Gegenteil ist eine Longitudinalwelle (Längswelle), bei der die Schwingung in Richtung der Ausbreitungsrichtung stattfindet.

Transversalwellen sind polarisierbar, da die Schwingung in der gesamten Ebene möglich ist, die senkrecht auf ihrer Ausbreitungsrichtung steht.

Stehende Wellen

Ein wichtiger Spezialfall sind sog. “Stehende Wellen”. Sie haben Knoten und Bäuche.

An einem festen Ende ist immer ein Knoten (Auslenkung Null) und an einem offenen Ende ist immer das Maximum eines Bauches.

Betrachten wir zwei feste Enden, so ist für die Gundschwingung: \( \frac{\lambda}{2} = L  \) und die Oberschwingungen ungerade Vielfache von lambda/2.

Weiterführendes

Stehende Wellen spielen eine Rolle

Physik: Thermodynamik – Wärmelehre

Gehört zu: Physik
Siehe auch: Quantenmechanik, Physikalische Größen, Ideale Gase
Benutzt: WordPress-Plugin Latex

Stand: 29.06.2023   (neu: Zustandsgrößen)

Die Thermodynamik

Warnung / Disclaimer

Diesen Blog-Artikel schreibe ich ausschließlich zu meiner persönlichen Dokumentation; quasi als mein elektronisches persönliches Notizbuch. Wenn es Andere nützlich finden, freue ich mich, übernehme aber kleinerlei Garantie für die Richtigkeit bzw. die Fehlerfreiheit meiner Notizen. Insbesondere weise ich darauf hin, dass jeder, der diese meine Notizen nutzt, das auf eigene Gefahr tut.
Wenn Podukteigenschaften beschrieben werden, sind dies ausschließlich meine persönlichen Erfahrungen als Laie mit dem einen Gerät, welches ich bekommen habe.

Die Thermodynamik oder Wärmelehre ist eine natur- und ingenieurwissenschaftliche Disziplin. Das hauptsächliche Thema ist das Studium der Dampfmaschinen und die Frage, wie man Wärme in mechanische Arbeit umwandeln kann.

In der Thermodynamik (=Wärmelehre) werden wir erstmals irreversible Prozesse sehen. So etwas gab es in der klassischen Mechanik nicht.

Es gibt zwei Ansätze in der Thermodynamik: die statistische Sicht und die phänomenologische Sicht.  Statistisch werden ganz viele “Mikrozustände” betrachtet – Phänomenologisch geht es um die nach außen sichtbaren “Makrozustände”. Generell geht man davon aus, das sich die Mikrozustände in gewisser Weise vollkommen ungeordnet, eben stochastisch, verhalten.

Die physikalische Größe “Temperatur” wird in der Thermodynamik neu in die Physik eingeführt und ist eben eine “makroskopische” Größe.
Ausserdem wird eine weitere physikalische Größe, die “Entropie” eingeführt, die sehr schwer zu verstehen ist (dazu weiter unter: Zweiter Hauptsatz der Thermodynamik).

Phänomenologisch beschreiben wir den Zustand eines Systems oft durch die physikalischen Größen  Volumen, Druck und Temperatur (sog. Zustandsgrößen). Ein und der gleiche so beschriebene phänomenologischer Zustand kann dann aber durch viele unterschiedliche “mikroskopische” Zustände zustande kommen – eben statistisch.

Zustandsgrößen

Eine Zustandsgröße ist eine physikalische Größe, die – ggf. zusammen mit anderen – den Zustand eines physikalischen Systems zu einem gegebenen Zeitpunkt beschreibt und zwar unabhängig davon, auf welchem Wege er zustande gekommen ist; also unabhängig von der “Vorgeschichte” des Systems.

So sind beispielsweise Druck und Temperatur klassische Zustandsgrößen, aber die physikalische Größe “Arbeit” nicht. Letztere bezeichnet man dann als  sog. “Prozessgröße”.

Links:

Stichworte:

  • Wärme, Temperatur, Entropie
  • Ideales Gas
  • Irreversible Prozesse
  • Perpetuum mobile
  • Dampfmaschine
  • Thermodynamisches Gleichgewicht
  • Freiheitsgrade
  • Phasenraum

Temperatur – Thermodynamisches Gleichgewicht

Bringt man zwei Körper unterschiedlicher Temperatur zueinander in Kontakt, so stellt sich nach einer gewissen Zeit ein sog. “thermodynamisches Gleichgewicht” ein. Dann sind die Temperaturen beider Körper gleich.

So können wir schon einmal sagen, wann zwei Temperaturen gleich sind, aber haben noch keine Messskalen.

Temperatur – Messung der Temperatur

Die Temperatur ist eine Basis-Einheit des SI-Systems. Historisch wurde die Temperaturskala durch bestimme Fixpunkte festgelegt zwischen denen man dann interpolieren musste.

Als solche Fixpunkte hatte man benutzt Schmelzpunkte bzw. Gefrierpunkte von Wasser, Wasserstoff, Gold etc. Später ging man auch dazu über sog. Trippelpunkte als Fixpunkte zu benutzen.

Zur Interpolation zwischen solchen Fixpunkten nutzt man temperaturabhängege Eigenschaften von Körpern; wie z.B. die Längenausdehnung eines Metallstabes oder die Volumenausdehnung von Flüssigkeiten.

1948 wurde durch die 9. Generalkonferenz für Maß und Gewicht (CGPM) festgelegt, dass eine absolute thermodynamische Skala den Tripelpunkt des Wassers als einzigen fundamentalen Fixpunkt haben sollte. Vor allem die starke Abhängigkeit des Siedepunkts vom Luftdruck hatte die Temperatureichung über die bisherigen Fixpunkte schwierig gemacht. Der Tripelpunkt hingegen war leicht und eindeutig reproduzierbar.

1954 wurde das Kelvin von der CGPM in der bis zum 19. Mai 2019 gültigen Form definiert und zur Basiseinheit erklärt. Dadurch bekam zugleich das Grad Celsius eine neue Definition. Die Bezeichnung war zunächst „Grad Kelvin (°K)“ und wurde 1967 auf „Kelvin (K)“ geändert. Die Definition lautete seitdem: „Das Kelvin, die Einheit der thermodynamischen Temperatur, ist der 273,16-te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers.“.

2019: Anbindung an die thermische Energie: Die thermodynamische Temperatur ist direkt proportional zur thermischen Energie, mit der Boltzmann-Konstanten als Proportionalitätsfaktor  (1.380649 * 1023 Joule/Kelvin). Solange die Einheiten von Energie (Joule) und Temperatur (Kelvin) unabhängig voneinander definiert waren, musste die Boltzmann-Konstante experimentell bestimmt werden. Diese Messungen wurden im Laufe der Zeit immer präziser und erreichten schließlich die Genauigkeit der Realisierung des Kelvin über den Tripelpunkt des Wassers. Damit war die Existenz zweier konkurrierender Definitionen nicht mehr zu rechtfertigen. Der Boltzmann-Konstanten wurde ein fester Wert in der Einheit J/K zugewiesen und das Kelvin dadurch direkt an das Joule gekoppelt. Der Wert der Boltzmann-Konstanten, die seitdem ein nur durch Konvention festgelegter Skalierungsfaktor ist, wurde so gewählt, dass das neue Kelvin möglichst genau mit dem alten übereinstimmte. Diese Änderung trat mit der Revision des Internationalen Einheitensystems am 20. Mai 2019 in Kraft.

Adiabatischer Prozess

Das Wort adiabatisch beschreibt in der Thermodynamik einen Prozess (eine Zustandsänderung), bei dem ein System keine Wärme mit seiner Umgebung austauscht. Das System ist also thermisch isoliert, sodass Änderungen nur durch Arbeit (z. B. Kompression oder Expansion) und nicht durch Wärmezufuhr oder -abgabe erfolgen.

Bei einer adiabatischen Zustandsänderung bleibt die zugeführte oder abgegebene Wärme ΔQ = 0.

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik ist eine besondere Form des Energieerhaltungssatzes aus der Mechanik. In Worten bedeutet dies: Die Änderung der inneren Energie eines geschlossenen Systems ist gleich der Summe der Änderung der Wärmemenge und der Änderung der Arbeit.

In Formeln kann man das so ausdrücken:

\( \Delta U = \Delta Q + \Delta W \)

wobei:

  • U innere Energie des Systems
  • Q der Wärmeinhalt (Wärmemenge) des Systems – positiv, wenn dem System zugeführt – negativ, wenn aus dem System abgeführt
  • W die vom System geleistete mechanische Arbeit – positiv, wenn dem System zugeführt – negativ, wenn nach außen geleistet

Zweiter Haupsatz der Thermodynamik

Vorzugsrichtung von Prozessen. Der zweite Hauptsatz der Thermodynamik in der Formulierung von Rudolph Clausius (1822-1888) lautet: „Es gibt keine Zustandsänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer auf einen Körper höherer Temperatur ist.

Zustandsveränderungen können reversibel (wie in der klassischen Mechanik) oder irreversibel sein. Irreversible Prozesse laufen nur in einer Richtung ab und nicht umgekehrt. Bei reversiblen Prozessen bleibt die Entropie gleich, bei irreversiblen Prozessen nimmt die Entropie zu.

Der Zweite Hauptsatz der Thermodynamik kann mit Hilfe des Begriffs der Entropie auch so formuliert werden, dass die Entropie (eines geschlossenen Systems) niemals abnehmen kann.

Damit bekommt die Zeit eine Richtung.

Ideale Gase

Das Einfachste, mit dem sich die Thermodynamik gern befasst, sind die sog. Idealen Gase.

Boltzmann

Der österreichische Physiker Ludwig Boltzmann (1844-1906) beschreibt mit seiner “Boltzmann-Gleichung” die Dynamik eines idealen Gases und definiert die physikalische Größe Entropie über Mikro- und Makro-Zustände…

Thermodynamische Zustandsänderungen

Ein thermodynamischer Prozess kann zu einer thermodynamischen Zustandsänderung führen. Solche Zustandsänderungen (Prozesse) können reversibel oder irreversibel sein.

Zustandsgrößen beschreiben den Zustand eines thermodynamischen Systems; wobei es egal ist, auf welchem Wege man den betreffenden Zustand erreicht.

Typische Zustandsgrößen sind:

  • Volumen: V
  • Druck: p
  • Innere Energie: U
  • Entropie: S

Zustandsänderungen eines thermodynamischen Systems werden durch die Veränderung von Zustandsgrößen beschrieben.

  • Isotherme Zustandsänderung: Keine Temperaturänderung, also T=const. bzw. Δ U = 0
  • Adiabatische Zustandsänderung: Kein Wärmeaustausch, also Δ Q = 0

Veranschaulichen kann man sich solche Zustandsänderungen gut an einem p-V-Diagramm.

Klassische Definition der Entropie

Schon früher haben wir physikalische Größen kennengelernt, die “unabhängig vom Weg”  waren: In einem konservativen Kraftfeld war die Arbeit, die nötig ist, um von A nach B zu kommen weg-unabhängig. Deshalb konnen wir da die potentielle Energie und das Potential einführen.

Analoges macht in der Thermodynamik Rudolf Clausius (1822-1888) mit seiner klassischen Definition der Entropie (Formelzeichen: S). Die Entropie stellt so etwas wie ein Maß für die “Irreversibilität” dar. Die SI-Maßeinheit der Entropie ist Joule/Kelvin.

Zunächst betrachten wir nur Zustandsveränderungen – also Deltas. Damit definieren wir Entropieveränderungen als:

\( \Large \Delta S = \frac{\Delta Q}{T} \)

Der bekannte Carnot’schen Kreisprozess beschreibt im p-V-Diagramm ja eine geschlossene Kurve und ist insgesamt auch reversibel, da er ja aus vier Prozessschritten besteht, wovon jeder einzelne reversibel ist. Unsere Berechnungen des Carnot’schen Kreisprozesses hatten ja für die zwei isothermen Prozessschritte (w=warm, k=kalt) ergeben:

\( \Large\frac{\Delta Q_w}{T_w} + \frac{\Delta Q_k}{T_k} = 0  \)

Was uns zu einer generellen Formel (ohne Beweis) führt:

\( \Large \oint_\alpha \frac{d Q}{T} = 0 \)

für reversible Prozesse, die im p-V-Diagramm eine geschlossene Kurve “α” bilden.

In Analogie zum Potentialbegriff in einem Kraftfeld können wir auch hier ein “Potential” definieren, das wir “Entropie S(A)” am Aufsetzpunkt “A” nennen:

\( \Large S(A) = \int_O^A \frac{d Q}{T} \)

Mit einem festzusetzenden Referenzpunkt “O” .
Die physikalische Größe Entropie kann man in diesem Sinne sehr abstrakt definieren. Der Vorteil ist, dass die Entropie nun tatsächlich eine Zustandsgröße ist.

Statistische Definition der Entropie

Ludwig Boltzmann wird 50 Jahre nach Clausius eine schöne statistische Definition der physikalischen Größe Entropie geben.

Ein thermodynamischer Makrozustand (z.B. Druck eines Gases) kann durch sehr viele Mikrozustände der Gas-Moleküle (also Orte und Impulse) realisiert werden. Da wir es mit gigantisch großen Anzahlen von Molekülen zu tun haben setzen wir die Statistik ein und kommen zu Aussagen über Wahrscheinlichkeiten von Anordnungen (oder Unordnungen).

Die klassische Definition der Größe Entropie ist:

\( \Large S = k_B \log{P} \)

Wobei kB die Boltzmann-Konstante ist und P die Wahrscheinlichkeit mit der ein Makrozustand durch Mikrozustände eigenommen wird.

Durch die Benutzung des Logarithmus’ wird die Entropie zu einer richtigen extensiven (d.h. mengenartigen) physikalischen Größe. Wir können Entropie-Mengen sinnvoll addieren.

Die Frage ist dann noch, wo wir den Nullpunkt der Entropie setzen. Dazu hat Max Planck vorgeschlagen dass der Nullpunkt da liegen soll, wo es nur noch einen einzigen Mikrozustand gibt, durch den der Makrozustand realisiert werden kann. Das wäre ein ideales Kristallgitter in absoluter Ruhe. Also bei T=0 soll auch S=0 sein. Statt der Wahscheinlichkeit P benutzen wir dann also die Anzahl Mikrozustände Ω, die den Makrozustand realisieren. Max Planck war es auch, der vorgeschlagen hatte, die in der Formel vorkommende Konstante “Boltzmann-Konstante” zu nennen.

Damit kommen wir zu der berühmten Folmel, die auch auf Boltzmanns Grabstein auf dem Wiener Zentralfriehof steht:

\(\Large S = k_B \ln{\Omega} \)

 

 

 

Physik: Gravitation

Gehört zu: Himmelsmechanik
Siehe auch: Die Keplerschen Gesetze, Schwarzes Loch, Newton, Langrange-Punkte, Ebbe und Flut, Kraftfeld und Potential
Benutzt: WordPress-Plugin MathJax-Latex

Stand: 17.6.2025

Kraftfelder und Potential

Warnung / Disclaimer

Diesen Blog-Artikel schreibe ich ausschließlich zu meiner persönlichen Dokumentation; quasi als mein elektronisches persönliches Notizbuch. Wenn es Andere nützlich finden, freue ich mich, übernehme aber kleinerlei Garantie für die Richtigkeit bzw. die Fehlerfreiheit meiner Notizen. Insbesondere weise ich darauf hin, dass jeder, der diese meine Notizen nutzt, das auf eigene Gefahr tut. Wenn ich Podukteigenschaften beschreibe, sind dies ausschließlich meine persönlichen Erfahrungen als Laie mit dem einen Gerät, welches ich bekommen habe.

Das Gravitationsgesetz

Die Gravitation ist eine der vier Gundkräfte (Wechselwirkungen) im Standardmodell der Teilchenphysik.

Im Jahre 1668, formulierte Isaac Newton (1642-1727) das berühmte Gravitationsgesetz:

\( \Large F = G \frac{m \cdot M}{r^2}  \)

aus dem sich die Keplerschen Gesetze herleiten lassen…

Das Besondere der Erkenntnis von Newton ist nicht nur die Formulierung als eine einzige Formel, sondern auch, dass die Gravitationskraft zwischen allen Körpern im Universum wirkt. Beispielsweise kreisen die Jupitermonde gemäß diesem Gesetz um den Jupiter und ebenfalls kreisen Doppelsterne etc. aufgrund der Gravitation umeinander…

Zu den Zeiten Newtons beschäftigte sich die Physik in der Hauptsache und fast ausschließlich mit Mechanik. Newton (und Leibnitz) entwickelten die Infenitesimalrechung (engl. Calculus) mit der die Bewegung mechanischer Systeme durch die Wirkung von Kräften berechenbar gemacht werden konnte. Siehe dazu mein separater Artikel Newtonsche Mechanik.

Isaac Newton hat auch sehr viel über das Licht geforscht. Stichworte dazu wären: Teilreflektion, Newtonsche Ringe,…

Die Größe der Gravitationskonstante G wurde erst viel später durch das berühmte Experiment “Gravitationswaage” von Henry Cavendish (1731-1810) bestimmt.

In der Wikipedia finden wir:

\( \Large G = (6{,}674\,30\pm 0{,}000\,15)\cdot 10^{-11}\,\mathrm {\frac {m^{3}}{kg\cdot s^{2}}} \)

Eine ähnliche Formel wie hier für die Gravitationskraft zwischen zwei Massen haben wir in der Elektrostatik für die Elektrische Kraft zwischen zwei elektrischen Ladungen: Das Coulomb-Gesetz.

Gravitationspotential

Kraftfelder, wie das der Gravitation, können wir durch das zugehörige Potential-Feld beschreiben.

In einem sog. “konservativen” Kraftfeld \( \vec{F}(r) \) können wir eine Potentielle Energie (bzw. ein Potential) definieren.  Der Begriff konservativ bedeutet dabei, dass der Energieerhaltungssatz gilt. Die entlang eines Weges im Kaftfeld geleistete Arbeit ist unabhängig vom Weg und nur vom Anfangs- und Endpunkt des Weges abhängig. So kann eine skalares Feld, das Potential, definiert werden.

Ist das betrachtete Kraftfeld das Gravitationsfeld einer ruhenden Masse M, so ist das “Gravitationspotential” einfach:

\(  \Large\Phi(r) = \space – G  \frac{M}{r}  \\ \)

Ist das betrachtete Kraftfeld das Elektrische Feld einer ruhenden elektrischen Ladung Q, so ist das “Coulomb-Potential” einfach:

\(  \Large \Phi(r) = \space – \frac{1}{4\pi\epsilon_0}\frac{Q}{r}  \\ \)

Und umgekehrt ist das Kraftfeld \( \vec{F}(r) \) einfach der Gradient des Potentials. Also:

\( \vec{F}(r) = \enspace – k \enspace \nabla \Phi(r) \)   (wobei k die Ladung bzw. Masse ist)

Der ∇-Operator ist der Gradient, also in einer Dimension x:

\(\Large\nabla \Phi(x) = grad \, \Phi(x) =   \frac{d\Phi}{dx} = \frac{G M}{x^2}\)

Massenpunkte und ausgedehnte Körper

Strenggenommen gilt das bisher Gesagte nur für punktförmige Massen. Bei räumlich ausgedehnter Massenverteilung hat man ja eine Dichteverteilung also ρ(r) und muss die Poisson-Gleichung (Siméon Denis Poisson 1781-1840) verwenden:

\( \Large\Delta \Phi(r) = 4 \pi G \rho(r) \\\)

Wobei Δ der Laplace-Operator ist. Also Δ f = div (grad f).

Die Lösung der Poisson-Gleichung eine nur einer Dimension x ist einfach:

\( \Large\Delta \Phi(x) = div (grad \, \Phi(x)) = 4 \pi G \, div(grad \,\rho(x))) = 4 \pi G \frac{d^2\rho}{dx^2}\\\)

Durch zweifache Integration erhält man die Lösung:

\( \Large \Phi(x) = xyz \\\)

Beispiel: Das Gravitationspotential einer (kleine) homogene Kugel vom Radius R und der konstanten Dichte ρ ist ausserhalb der Kugel (also für r > R):

\( \Large \Phi(r) = -\frac{G \cdot M}{r}  \)

mit der Masse der Kugel: \(  M = V \cdot \rho = \frac{4}{3} \pi R^3 \cdot \rho \)

Die Gezeitenkraft

Ein ausgedehner Körper wird in einem Gravitationsfeld auseinander gezogen, weil die Gravitationskraft ja mit der Entfernung abnimmt. Die “Vorderseite” eines Körpers wird stärker angezogen als die “Hinterseite”. Je größer die Abmessung des Körpers in Richtung Vorderseite/Hinterseite ist, desto größer die auseinanderziehende “Gezeitenkraft” als Differenz der Kräfte vorne/hinten..

Die Erdanziehung

Wie wir alle aus der Schule wissen, haben wir auf der Erdoberfläche eine Gravitationsbeschleunigung von ca. 9,81 m/s2

Das Gravitationsgesetz (s.o.) können wir auch schreiben als:

\( \Large a = G \frac{M}{r^2}  \)

Wenn wir Kraft = Masse mal Beschleuigung, also F = m * a, benutzen.

Wenn wir den mittleren Erdradius als 6371 km annehmen, sind wir auf der Erdoberfläche also im Mittel 6371 km vom Erdmittelpunkt entfernt.
Die Erdmasse beträgt laut Wikipedia ca. 5,9772 * 1024 kg

Bei bekanntem Erdradius, bekannter Erdmasse und bekannter Gravitationskonstante kann man sich die mittlere Gravitationsbeschleunigung an der Erdoberfläche also ausrechnen:

\( \Large a = G \frac{5,9772 \cdot 10^{24}}{6371000^2} = 9,82  \)

Oder andersherum: Wenn man die Gravitationsbeschleunigung gemessen hat, den Erdradius kennt und die Gravitationskonstante misst (wie Henry Cavendish s.o.), kann man die Erdmasse bestimmen…

Die Kreisbahn (Kreisbewegung)

Für eine Kreisbahn mit dem Radius R wäre eine Zentripedalkraft erforderlich von:

\( F_Z = m \cdot \frac{v^2}{R}\)

So eine Zentripedalkraft soll durch die Gravitation des Zentralkörpers der Masse M bewirkt werden. Diese Gravitationskraft ist:

\( F_G = G \cdot \frac{m \cdot M}{R^2}\)

Rechnerisch ergibt sich daraus als Kreisbahngeschwindigkeit (sog. Erste kosmische Geschwindigkeit):

\( v_1 = \sqrt{\frac{G \cdot M}{R}}  \)

Was bei der Erde bedeuten würde: 7,91 km/s.
Das wäre eine (theoretische) Keisbahn mit dem Radius R; also einer Höhe von  Null Metern über der Erdoberfläche. Nehmen wir mal ein realistisches Beispiel: die ISS. Diese fliegt in ungefähr 400 km Höhe. Da kämen wir auf eine Geschwindigkeit von

\(\Large v = \sqrt{\frac{6.6743 \cdot 10^{-11} \cdot 5.9772 \cdot 10^{24}}{6371000 + 400000}} = 7.94 \enspace km/s \\ \)

Weiter draussen z.B. beim Mond ist die Kreisbahngeschwindigkeit kleiner. Da liegt die Kreisbahngeschwindigkeit nämlich so um 1 km/s.

Die Fluchtgeschwindigkeit

Damit ein Körper der Masse m von der Erdoberfläche entweichen kann, benötigt er eine kinetische Energie, die mindestens so groß ist wie seine potentielle Energie:

\( E_{kin} = \frac{m}{2} \cdot v^2 \)

Das Gravitationspotential auf der Erdoberfläche ist:

\( E_{pot} = \int\limits_{-\infty}^{R} G \cdot \frac{m \cdot M}{r^2} dr = G \cdot m \cdot M \cdot \left[ -\frac{1}{r} \right]_{-\infty}^R  =  -G \cdot m \cdot M \cdot \frac{1}{R}\)

Rechnerisch ergibt sich die Fluchtgeschwindigkeit (sog. Zweite kosmische Geschwindigkeit) zu:

\( v_2 = \sqrt{\frac{2 \cdot G \cdot M}{R}}  \)

Was bei der Erde bedeuten würde: 11,2 km/s

Diese Zahl beruht ausschließlich auf der Gravitation der Erde; soll heissen andere Einflüsse wie Erdrotation oder etwaige Swing-By-Manöver könnten diese erforderliche Geschwindigkeit reduzieren – wie etwa bei den Mondflügen oder Voyager Raumsonden…

Siehe auch: https://de.wikipedia.org/wiki/Fluchtgeschwindigkeit_(Raumfahrt)

Ein Schwarzes Loch

Bei einem Schwarzen Loch wäre die Fluchtgeschwindigkeit die Lichtgeschwindigkeit c.  Wenn wir v2 = c setzen ergibt sich:

\( c = \sqrt{\frac{2 \cdot G \cdot M}{R}}  \)

Aufgelöst nach dem Radius R ergibt sich:

\( R = \frac{2 \cdot G \cdot M}{c^2} \)

Bei einem solchen Radius könnte also kein Licht entkommen; deshalb werden solche Objekte “Schwarze Löcher” genannt. Bei einem kleineren Radius wäre die Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit; bei einem größeren Radius wäre die Fluchtgeschwindigkeit kleiner als die Lichtgeschwindigkeit. Man nennt diesen Radius den “Schwarzschild-Radius” oder auch den Ereignishorizont.

Genaugenommen müsste man hier die Gleichungen der Allgemeinen Relativitätstheorie (ART) verwenden, da wir hier mit Sicherheit relativistische Effekte wegen der starken Raumkrümmung hätten. Interessanterweise ist die Formel für den Ereignishorizont (Schwarzschild-Radius) aber bei der ART die gleiche wie hier in der “Milchmädchenrechnung”.

 

Mathematik: Komplexe Zahlen

Gehört zu: Mathematik
Siehe auch: Quantenmechanik, Von Pytharoras bis Einstein, Schrödinger-Gleichung, Wellengleichung
Benutzt: WordPress-Plugin Latex

Stand: 5.8.2025

Die komplexen Zahlen

Warnung / Disclaimer

Diesen Blog-Artikel schreibe ich ausschließlich zu meiner persönlichen Dokumentation; quasi als mein elektronisches persönliches Notizbuch. Wenn es Andere nützlich finden, freue ich mich, übernehme aber kleinerlei Garantie für die Richtigkeit bzw. die Fehlerfreiheit meiner Notizen. Insbesondere weise ich darauf hin, dass jeder, der diese meine Notizen benutzt, das auf eigene Gefahr tut.
Wenn Podukteigenschaften beschrieben werden, sind dies ausschließlich meine persönlichen Erfahrungen als Laie mit dem einen Gerät, welches ich bekommen habe.

Historie

Geronimo (oder Gerolamo) Cardano (1501-1576) “erfand” komplexe Zahlen als er sich mit der Lösung  kubischer Gleichungen beschäftigte (Cardanische Formel 1545). Er ging als Schöpfer der komplexen Zahlen in die Geschichte der Mathematik ein.

Das Symbol i  für die imaginäre Einheit als Lösung von x2 + 1 = 0 wurde erstmals 1777 von Leonhard Euler (1707-1783) eingeführt.

Erst Carl Friedrich Gauß (1777-1855) gelang 1831 eine geometrische Interpretation der komplexen Zahlen, indem er sie als Punkte in einer Ebene auffasste und so den Begriff der Gaußschen Zahlenebene prägte.

Im 20. Jahrhundert kam es dann zur praktischen Anwendung der komplexen Zahlen in der Quantenmechanik.

Heutige Grundlagen

Ausgangspunkt ist die berühmte imaginäre Einheit: i2 = -1

Eine komplexe Zahl schreibt man gerne als Realteil und Imaginärteil:

z = x + i*y      x = Re(z)   und   y = Im(z)

Wobei x und y reelle Zahlen sind.

Mit den Komplexen Zahlen kann man auch die vier Grundrechnungsarten, so wie wir sie von den “normalen” d.h. reellen Zahlen her kennen, ausführen – Die komplexen Zahlen bilden, mathematisch gesagt, einen “Körper”.

Zu jeder Komplexen Zahl gibt es die “komplex konjugierte“, die mit gern mit einem Sternchen als Superskript schreibt:

zur komplexen Zahl: z = x + i*y
ist die konjugierte:   z* = x – i*y

Manchmal schreibt man die komplex konjugierte auch mit einem Strich über der Zahl. Also:

\( \overline{x + y \cdot i} = x – y \cdot i \)

 

Jede Komplexe Zahl hat auch einen “Betrag” (kann man sich als Länge vorstellen):

|z|2 = x2 + y2

Interessanterweise ist der Betrag (Länge) einer Komplexen Zahl auch:

|z|2 = z z*

Darstellung der komplexen Zahlen mit kartesischen Koordinaten

Die Reellen Zahlen konnte ich mir ja durch die sog. Zahlengerade gut veranschaulichen. Die Komplexen Zahlen würde ich mir dann durch die Punkte in einer Ebene veranschaulichen.

Polar-Darstellung der komplexen Zahlen

Wenn komplex Zahlen einfach als Punkte in der Ebene verstanden werden können, kann ich sie anstelle von kartesischen Koordinaten, alternativ auch in durch sog. Polarkoordinaten darstellen; d.h. durch die Entfernung vom Nullpunkt r und den Winkel mit der reellen Achse φ.

Für eine Komplexe Zahl z = x + i*y  gilt:

r² = x² + y²

tan φ = x/y

\(\displaystyle \tan{ \phi} = \frac{x}{y} \)

Exponential-Darstellung der komplexen Zahlen

Die Eulerschen Formel ist:

\(\Large  e^{i  \cdot \phi} = \cos \phi+i \cdot \sin \phi \\\)

Damit können wir jede komplexe Zahl auch in sog. Exponential-Darstellung schreiben:

\(\Large z ={r} \cdot e^{i  \cdot \phi} \\ \)

Das funktioniert so gut, weil die Multiplikation von Potenzen der Addition der Exponenten entspricht und das mit den Summenformeln der Trigonometrie übereinstimmt.

Den Winkel φ nennt man auch “die Phase”.

Wenn die Komplexen Zahlen den Betrag 1 haben, also auf dem Einheitskreis liegen, hat man:

\( e^{i \phi} = cos{\phi} + i sin{\phi} \)

und man spricht von einer “reinen Phase”.

Abbildung 1: Polarkoordinaten (Github: Polarkoordinaten.svg)

In der Quantenmechanik wird diese Exponentialdarstellung gerne benutzt, u.a. weil man damit die Multiplikation komplexer Zahlen sehr anschaulich darstellen kann:

\(\Large z_1 \cdot z_2 = {r_1 \cdot r_2} \cdot e^{i  \cdot (\phi_1 + \phi_2)} \\ \)

Abbildung 2: Sie auch Youtube-Video:

Die Eulersche Zahl

Definition der Eulerschen Zahl

Die Zahl e wurde von Leonhard Euler (1707-1783) als Grenzwert der folgenden unendlichen Reihe definiert:

\(\displaystyle e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} +  \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + …   \)

Oder:

\(\displaystyle e = \sum_{n=0}^{\infty} \frac{1}{n!} \)

Die Exponentialfunktion

Potenzen zur Basis e bilden die Exponentialfunktion, auch e-Funktion genannt:

f(x) = ex

Die Ableitung (Differentialquotient) der e-Funktion ist wiederum die e-Funktion:

f'(x) = ex

Damit ergibt sich als Taylorsche Reihenentwicklung um den Entwicklungspunkt x0 = 0

\(\displaystyle f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}  + …  + \frac{x^n}{n!} + …   \)

Allgemein wäre die Taylor-Reihe ja:

\( \displaystyle T_\infty(x;x_0) = \sum_{k=0}^{\infty} \frac{f^(k)(x_0)}{k!} (x-x_0)^k \)

Da der Funktionswert und alle Ableitungen der e-Funktion an der Stelle x0 = 0 sämtlich 1 sind, vereinfacht sich die Darstellung wie oben gezeigt.

Physik: Teilreflektion

Gehört zu: Physik, Quantenmechanik

Teilreflektion

Die Teilreflektion von Licht an einer Oberfläche hat schon Isaac Newton, der ja von einer Teilchennatur des Lichtes ausging, beschäftigt. Dies ist eines der Paradebeispiele der Quantenmechanik, die ja Aufenthaltswahrscheinlichkeiten für Teilchen ausrechnen will.

Wenn ein monochromatischer Lichtstrahl auf eine Glasplatte scheint, haben wir das Phänomen der Teilreflektion.

Das Ereignis “Reflektion eines Photons an der Grenzschicht Luft/Glas”  habe die Wahrscheinlichkeit von 4% = 4/100 = 1/25. Die Wellenfunktion dieses Ereignisses wäre also ein Vektor der Länge Sqrt{1/25} = 1/5 = 0.2.

Die Drehung des Vektors wäre proportional der Zeit, die das Licht braucht um den Weg zurückzulegen. Wenn wir die Teilreflektion an der dünnen Glasschicht betrachten, spielt nur die Differenz der Laufzeiten eine Rolle, wenn wir die Differenz der Drehwinkel bestimmen wollen..

So bekommen wir gute Beispiele an denen sich Auswirkungen der Quantenphysik in alltälichen Phänomenen demonstieren lassen.

 

 

Physik: Kreisbahn – Zentrifugalkraft – Zentripedalkraft – Drehimpuls

Drehimpuls gehört zu: Astronomie, Physik, Himmelsmechanik
Siehe auch Keplersche Gesetze, Sonnensystem, Gravitation, Bohrsches Atommodell
Benutzt: WordPress-Plugin Latex

Stand: 16.12.2024

Zentrifugalkraft in einer Kreisbahn

Wenn ein Körper der Masse m (z.B. Planet oder ein Elektron im Bohrschen Atommodell) eine Kreisbahn mit dem Radius r beschreibt, so muss aus Sicht des Körpers eine Kraft in Richtung vom Mittelpunkt der Kreisbahn weg wirken:

\( F = \frac{m \cdot v^2}{r} \)

Diese Kraft nennt man “Zentrifugalkraft“. Das Bezugssystem des auf einer Kreisbahn befindlichen Planeten ist kein Inertialsystem. Die Zentrifugalkraft ist eine “Trägheitskraft” (auch Scheinkraft genannt). Die Kreisbahn kommt dadurch zustande, dass eine Kraft gleicher Größe in entgegengesetzter Richtung (Zentripedalkraft genannt) wirkt.

Kreisbahnen im Sonnensystem

Im Sonnensystem wirkt die Anziehungskraft (Graviationskraft) des Zentralkörpers Sonne (Masse M) als Zentripedalkraft auf einen Planeten (Masse m)  man hat also:

\(\frac{m \cdot v^2}{r} = G \cdot \frac{m \cdot M}{r^2}\)

Für die Kreisbahngeschwindigkeit im Sonnensystem gilt also:

\( v = \sqrt{\frac{ G \cdot M} {r}} \)

Dies ist auch ein Ausgangspunkt der Forschungen von Vera Rubin (1928-2016), die die Rotationsgeschwindigkeit in Galaxien bei unterschiedlichen Abständen vom Zentrum untersucht hat und dadurch die Existenz von sog. Schwarzer Materie bekräftigtigen konnte.

Mit den Mitteln der Vektoralgebra ausgedrückt ergibt sich die Bahngeschwindigkeit bei einer Kreisbewegung zu:

\( \vec{v} = \vec{\omega} \times \vec{r} \\ \)

Die kinetische Energie eines Planeten auf einer Kreisbahn mit dem Radius R ist:

\( E_{kin}(R) = \Large\frac{m}{2} \cdot v^2 = \frac{m}{2} \cdot \frac{G \cdot M}{R}\\\)

Die potenzielle Energie ist:

\( E_{pot}(R) = \Large \int\limits_{-\infty}^R m G M r^{-2} dr = m G M \left[-\frac{1}{r}\right]_{-\infty}^R = -m\frac{GM}{R}\)

Wasserstoffatom

Im Wasserstoffatom wirkt die elektrostatische Kraft (Elektrisches Feld) des Atomkerns  (Ladung q1) auf ein Elektron (Ladung q2) als Zentripedalkraft; man hat also:

\(\Large \frac{m \cdot v^2}{r} =   \frac{1}{4 \pi \epsilon_0} \frac{q_1 \cdot q_2}{r^2}  \\\)

Für die Kreisbahngeschwindigkeit im Bohrschen Atommodell gilt also:

\( v^2 = \Large \frac{1}{4 \pi \epsilon_0 m} \frac{q_1 \cdot q_2}{r} \\ \)

Definition des Drehimpulses

Klaro: Bei einer Rotation eines Systems vom Trägkeitsmoment J mit einer Winkelgeschwindigkeit ω habe ich einen Drehimpuls:

\( L = \omega \cdot J \\ \)

Da erhebt sich die Frage, was eigentlich ein “Trägheitsmoment” sein soll…

Im einfachen Fall von Körpern der Masse m (z.B. ein Planet) auf einer Kreisbahn vom Radius r (z.B. Sonnensystem) folgt aus der allgemeinen Definition des Trägheitsmoments J:

\( J = m \cdot r^2 \\\)

Damit wäre der Drehimpuls:

\( L = \omega \cdot m \ r^2 \\\)

Wenn wir dies mit der Bahngeschwindigkei \( v = \frac{2 \pi \cdot r}{T}  \) ausdrücken wollen, benutzen wir die Beziehung:
\( \omega = \frac{v}{r} \) und erhalten:

\(L = v \cdot m \cdot r \\\)

Gemessen wird der Drehimpuls also in den SI-Einheiten: \( \Large \frac{m^2 kg}{s} \)

Drehimpuls und die Keplerschen Gestze

Wenn der Drehimpuls eine Erhaltungsgröße ist, folgt aus obiger Gleichung sofort das 2. Keplersche Gesetz.

Beispiele der Erhaltung des Drehimpulses

Wir alle kennen das Beispiel der Pirouette einer Eistänzerin. Wenn die Arme angezogen werden, verringert sich das Trägheitsmoment und die Winkelgeschwindigkeit steigt an, da der Drehimplus erhalten bleibt.