Physik: Relativitätstheorie, Raum-Zeit-Diagramme, Lorentz-Transformation, Minkowski-Metrik und Eigenzeit

Gehört zu: Physik
Siehe auch: Kosmologie, Tensoren, Lineare Algebra, Metrik, Allgemeine Relativitätstheorie, Quantenfeldtheorie, Schwarzes Loch
Benutzt: WordPress-Plugin Latex, Grafiken von Github, Grafiken von Wikipedia

Stand: 08.12.2024  (Vierer-Vektor, Minkowski-Metrik ausführlicher, Weltlinie, Eigenzeit, Loedel, Lorentz-Faktor, Penrose)

Überschneidungen mit: Relativitätstheorie

Was ist mit “Relativität” gemeint?

Der Begriff der “Relativität” von physikalischen Vorgängen dreht sich darum, dass ein und dieselbe Beobachtung von verschiedenen Beobachtern in verschiedenen Koordinatensystemen gemacht wird. Bei den oben genannten “physikalischen Vorgängen” handelt es sich um die Messung physikalischer Größen wie:

  • Zeit
  • Ort
  • Geschwindigkeit
  • Impuls
  • Beschleunigung
  • Kinetischen Energie
  • Elektromagnetische Kaft
  • Maxwell-Gleichungen

Dabei könnten zwei Beobachter immer zu übereinstimmenden Ergebnissen kommen (so etwas nennt man dann “invariant”) oder es ergeben sich manchmal unterschiedliche Ergebnisse (“variant”). Im letzteren Fall kommt es also darauf an, welcher Beobachter diese Messung gemacht hat. Somit sind die Ergebnisse also “relativ” zu einem bestimmten Beobachter zu sehen.

Im Falle einer solchen Relativität möchte man die Messergebnisse zwischen Beobachtern formelmäßig “transformieren” können.
Dafür betrachten wir zunächstmal den einfachen Fall, dass sich die Beobachter, gleichförmig und gradlinig zu einander bewegen, also ohne Beschleunigung. Solche Beobachter bzw. deren Koordinatensysteme (Ort und Zeit) nennen wir “Inertialsysteme“.
Ein Beobachter beobachtet Ereignisse, denen er jeweils Ort und Zeit zuordnet.

Raum-Zeit-Diagramm

Solche Ereignisse kann man sich als Punkte in einem sog. Raum-Zeit-Diagramm veranschaulichen, wo die auf der einen Achse die drei Raum-Dimensionen x, y, z auf eine Dimension vereinfacht werden: x. Es bleibt als zweite Achse die Darstellung der Zeit, wobei es sich später als elegant erweisen wird, statt der “echten” Zeit das Produkt aus Lichtgeschwindigkeit und der Zeit, also c · t abzutragen.

Ein Minkowski-Diagramm ist eine ganz einfache grafische Darstellung, nämlich ein rechtwinkliges zweidimensionales Koordinatensystem mit einer Zeitachse und einer Raumachse (also der dreidimensionale Raum auf eine Dimension vereinfacht). Ein Punkt im Minkowski-Diagram wird auch Ereignis genannt, denn der Punkt beschreibt Ort und Zeit. Die Bewegung eines Punktes ist eine Linie im Raum-Zeit-Diagramm und wird seine Weltlinie genannt.

Punkte, die sich gleichförmig und gradlinig bewegen, haben dann als Weltlinie eine Gerade im Raum-Zeit-Diagramm.

Abbildung 1: Minkowski-Diagramm: Weltlinie eines Photons (Github: Minkowski_Diagram_Photon.svg)

Weltlinie eines Photons

Die Weltlinien von Teilchen mit konstanter Geschwindigkeit sind Geraden im Minkowski-Diagramm. Üblicherweise wählt man die Einheiten auf den Achsen so, dass die Weltlinien von Licht (Photonen) eine Steigung von 45 Grad haben.

Mit so einem Raum-Zeit-Diagramm stellen wir also einen 2-dimensionalen Vektorraum dar und suchen nach Transformationen, die Koordinaten eines Punktes (Ereigniss genannt) von einem Koordinatensystem in ein anderes transformieren. Da es sich bei den Koordinatensystemen um Intertialsystem handeln soll, könnten wir vermuten, dass die Transformationen auch ganz einfache sind z.B. Linerare Transformationen, die dann als Matrix dargestellt werden könnten.

Relativität bei Galileo

Bei Galileo (1564-1642) sind die die physikalischen Gesetze, speziell die Bewegungsgleichungen, identisch in allen Inertialsystemen. Es gibt kein bevorzugtes System, was etwa “in Ruhe” wäre. Jede Bewegung muss relativ zu einem Bezugspunkt gemessen werden.

Speziell für Geschwindigkeiten gilt nach Galileo das auch intuitiv einleuchtende “Additionsgesetz” d.h. wenn ein Beobachter in seinem System ein Objekt mit der Geschwindigkeit v1 misst, dann wird ein anderer Beobachter, der sich relativ zum ersten Beobachter mit der Geschwindigkeit v bewegt, die Geschwindigkeit desselben Objekts zu v2 = v1 + v messen. Wobei da noch die Richtungen berücksichtigt werden müssen, also: \( \vec{v_2} = \vec{v_1} + \vec{v} \)

Auch die Lichtgeschwindigkeit wäre in unterschiedlichen Inertialsystemen unterschiedlich.

Die Galilieo-Transformationsgleichungen wären demnach:

\(  \tilde{t} = t \\ \tilde{x} = -v \cdot t + x \\ \)

Was als Galileo-Transformationsmatrix ergibt:

\( F = \left[ \begin{array}{rr} 1 & 0 \\  -v & 1 \\  \end{array} \right] \\ B = \left[ \begin{array}{rr} 1 & 0 \\  v & 1 \\  \end{array} \right] \)

Wobei F (=foreward) und B (=backward) wieder die Identität ergeben.

Youtube Video eigenchris 103d: https://youtu.be/ndjiLM5L-1s

Abbildung 2: Galilio-Transformation (Github: Gallileo.svg)

Gallilieo.svg

Gallileo/Newton-Transformation (blau -> rot)

Bei der Koordinatentransformation nach Gallileo/Newton verschiebt sich “nur” die x-Achse, die Zeit (t) ist in jedem bewegten Inertialsystem gleich. Deswegen würde jede Geschwindigkeit (also auch die Lichtgeschwindigkeit) verändert.

Lorentz & Co.

Die sog. Lorentz-Transformationen entstanden nach 1892 um zunächst die damals vorherrschende Äthertheorie in Einklang mit den Ergebnissen des Michelson-Morley-Experiments zu bringen. (Albert A. Michelson 1881 in Potsdam). Die Lorentz-Transformationen wurden erst 1905 von Heny Poicaré (1854-1912)  so formuliert, wie wir sie heute kennen:

\(  c \cdot \tilde{t} = \gamma (ct – \beta x) \\ \tilde{x} = \gamma ( -\beta c t + x) \)

wobei \( \beta = \frac{v}{c}  \) und \( \gamma = \frac{1}{\sqrt{1-\beta^2}} \)

Wobei diese Faktoren so bestimmt sind, dass die Lichtgeschwindigkeit in allen Intertialsystemen gleich ist.

Als Lorentz-Transformationsmatrix ergibt sich:

\( F = \gamma \left[ \begin{array}{rr} 1 & -\beta \\  -\beta & 1 \\  \end{array} \right] \\ B = \gamma \left[ \begin{array}{rr} 1 & +\beta \\  +\beta & 1 \\  \end{array} \right] \)

Youtube Video eigenchris 104b: https://youtu.be/240YGZmV1b0

Abblidung 3: Lorentz-Transformation (Github: Lorentz.svg)

Lorentz Transformation

Lorentz-Transformation (blau -> rot)

Bei der Lorentz-Transformation werden beide Achsen in Richtung auf die Diagonale gedreht. Dadurch werden die ursprünglichen Quadrate zu Rhomben und die Lichtgeschwindigkeit beibt gleich (die Diagonale). Damit bleibt die Skalierung (also die Achsenteilungen) bei der Lozenz-Transformation so, dass die Flächen der Rhomben gleich den Flächen der ursprünglichen Quadrate sind. Für diese Skalierung sorgt der sog. Lorentz-Faktor γ (siehe oben).

Wenn man in so einem Minkowski-Diagramm zwei Intertialsysteme darstellen will, ist das eine rechtwinklig (chartesisch) und die Achsen des anderen sind gemäß Lorentz-Transformation schief dazu – das stört bei Manchen das ästetische Empfinden. Deshalb greift man in so einem Fall auch manchmal zu einer Variante des Minkowsiki-Diagramms, dem Loedel-Minkowsik-Diagramm (nach Ernesto Palumbo Loedel 1901-1962).

Auch der Begriff der Gleichzeitigkeit wird relativ (https://en.wikipedia.org/wiki/Relativity_of_simultaneity)

Abbildung 4: Gleichzeitigkeit (Wikipedia: https://en.wikipedia.org/wiki/Relativity_of_simultaneity#/media/File:Relativity_of_Simultaneity_Animation.gif)
Relativity of Simultaneity (Copyright: Wikipedia)

Bei Ereignissen, die raumartig (s.u.) getrennt sind (|x| > ct) kann durch eine Lorentz-Transformation die Gleichzeitigkeit und damit die Kausalität relativiert werden.

SRT Einsteins Spezielle Relativitätstheorie

Dazu habe ich einen eigenen Blog-Artikel geschrieben: Spezielle Relativitätstheorie

SRT Minkowski-Raum – Minkowski-Metrik – Linienelement

Hermann Minkowski (1864-1909) war Mathematiker und lehrte an den Universitäten Bonn, Königsberg, Zürich und hatte schließlich einen Lehrstuhl in Göttingen. In Zürich war er einer der Lehrer von Albert Einstein.

Auf Minkowski geht die Idee zurück, die Welt (wie Lorenztranformation und Spezielle Relativitätstheorie) als einen nicht-euklidischen vierdimensionalen Raum zu verstehen. Wobei er mit  anschaulichen Bildern (grafischen Darstellungen) anstatt mit schwerer verständlichen Formeln arbeitete.

Zwei Begriffe kommen sofort bei “Minkowski” ins Gespräch:

  • Minkowski-Raum
  • Minkowski-Diagramm

Der Minkowski-Raum ist eine “größere Geschichte”: Ein vierdimensionaler Raum mit einer speziellen Metrik, denn in einem Raum möchte man ja Abstände zweier Punkte messen, Länge von Vektoren, Winkel und Flächen bestimmen.  Eine solche Metrik kann man beispielsweise durch ein Skalarprodukt von Vektoren definieren.
Eine einfache Definition der Metrik im Minkowski-Raum ist gegeben durch (“Linienelement”):

ds²  = c² dt² – (dx² + dy² + dz²)

Soetwas schreiben die Oberspezialisten gern als einen Tensor, auch “metrischer Tensor” genannt:  \( ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu}\) (bei einem Tensor wird “implizit” summiert.)

Wenn man unser Universum als Minkowski-Raum verstehen wollte, mit einer durch das Linienelement

ds²  = c² dt² – (dx² + dy² + dz²)

definierten Metrik, wäre das ein “flacher” Raum, also nicht gekrümmt (so zu sagen ohne Gravitation).

In so einem Minkowski-Raum, also mit der Minkowski-Metrik, lässt sich die Spezielle Relativitätstheorie (SRT) sehr einfach grafisch darstellen.

Das Linienelement der Minkowski-Metrik

Hermann Minkowski (1864-1909) war ein deutscher Mathematiker, der zeitweise auch Einsteins Lehrer in Zürich war.

Ein Minkowski-Diagramm ist ja relativ locker definiert (s.o.). Da haben wir eben die Zeit als weitere Dimension und beschreiben damit eine Ereignis in der Raumzeit durch einen Punkt mit vier Koordinaten:

Ereignis: e = (t, x, y, z)

Von einem Minkowski-Raum spricht man, wenn man auch noch eine Metrik hat, womit dann Abstände definiert werden. Allerdings wollen wir eine Metrik, die Lorentz-invariant ist; d.h. der Abstand zweier Ereingnisse (Punkte) soll in allen Inertialsystemen, die durch Lorentz-Transformation in einander übergehen, der gleiche sein. Mit einem einfach gedachten Linienelement:

ds²  = c² dt² + dx² + dy² + dz²

funktioniert das leider nicht (kann man ausrechnen).

Als sog. Minkowski-Metrik definiert man stattdessen das Linienelement:

ds²  = c² dt² – (dx² + dy² + dz²)

Die dadurch definierte Metrik ist tatsächlich Lorentz-invariant (kann man ausrechnen). Formal wird diese Minkowski-Metrik definiert durch einen Metrik-Tensor, den sog. Minkowski-Tensor (siehe dort).

So eine Metrik definiert zunächsteinmal die Länge eines Vektors \( \vec{S} = ( x^1, x^2, x^3, x^4 ) \) als:

\( || \vec{S} || = \sqrt{\vec{S} \cdot \vec{S}} = \sqrt{g_{ij} x^i x^j}  \)

Um den Abstand zweier Ereignisse in unserer Raumzeit  s1 = (t1, x1, y1, z1) und s2 = (t2, x2, y2, z2) zu ermitteln, nehmen wir die Länge des Differenz-Vektors:

\(  s^2 = || s_2 – s_1 || =  c^2 (t_2 – t_1)^2 – (x_2 – x_1)^2 – (y_2 – y_1)^2 – (z_2 – z_1)^2  \)

In so einem Minkowski-Raum, also mit der Minkowski-Metrik, lässt sich die Spezielle Relativitätstheorie (SRT) demnach sehr einfach grafisch darstellen eben weil diese Metrik Lorentz-invariant ist.

Man sagt auch: Wenn man unser Universum als Minkowski-Raum verstehen wollte, mit dieser Metrik,  wäre das ein “flacher” Raum, also nicht gekrümmt (so zu sagen ohne Gravitation).

Raumartig, Zeitartig, Lichtartig

Für den Abstand zweier Ereignisse können wir unterscheiden:

  • \( s^2 > 0 \) : Der Abstand wird “zeitartig” genannt – die Ereignisse sind zeitartig getrennt
  • \( s^2 < 0 \) : Der Abstand wird “raumartig” genannt – die Ereignisse sind raumartig getrennt
  • \( s^2 = 0 \) : Der Abstand wird “lichtartig” genannt

Auf eine Raum-Dimension vereinfacht, ist der Minkowski-Abstand: \( s^2 = c^2 t^2 – x^2 \). Damit ist dann:

  • Zeitartiger Abstand: \( x < ct \)
  • Raumartiger Abstand:   \( x > ct \)
  • Lichtartiger Abstand: \( x = ct \)

Abblidung 5: Minkowski-Metrik (Github: Minkowski-02.svg)

Minkowski-02.svg

Kurven als Weltlinie

Die Begriffe “raumartig” (space like) und “zeitartig” (time like) werden auch für Kurven im Minkowski-Diagramm verwendet.
Dabei betrachtet man infenitesimal kleine Kurvenstücke und fragt sich, ob diese als Intervall immer raumartig oder immer zeitartig sind.
Ein wichtiges Thema sind “closed timelike curves”…

Minkowski-Abstand

Man darf sich von der Optik des Minkowski-Diagramms nicht zu vereinfachten Schlüssen verführen lassen. Bei einem Minkowski-Abstand von: \( s^2 = c^2 t^2 – x^2 \) liegen beispielsweise alle Punkte (Ereignisse), die vom Koordinatenursprung den Minkowski-Abstand 1 haben, nicht auf der Kugelschale mit Radius 1, sondern die Menge (ct, x):

\( 1 = {ct}^2 – x^2 \)

Das ist eine Hyperbel im Minkowski-Diagramm. Dort liegen also alle Punkte im ursprünglichen Bezugssystem (ct,x), die eine Abstand 1 vom Koordinatenursprung haben.

Da dieser Anstand invariant ist, liegt dort also auch für jedes Lorenz-transformierte Bezugssystem (ct’, x’) der Punkt auf der transformierten Raum-Achse, der einen Abstand 1 vom Ursprung hat.

Wir müssen also immer daran denken, dass im Minkowski-Raum nicht die vom Diagramm “vorgegaukelte” Euklidische Geometrie gilt, sondern der Minkowski-Abstand.

Abbildung 6: Minkowski-Abstand (Github: hyperbel.svg)

Hyperbel.svg

Minkowski-Metrik

Vierer-Vektoren

Im Raum-Zeit-Diagramm ist ein Punkt ein Ereignis, beschrieben durch seinen Ort im Raum und den Zeitpunkt; man benötigt im dreidimensionalen Raum also 4 Koordinaten (siehe Koordinatensysteme). Man spricht deswegen auch von einem Vierer-Vektor:

\( \vec{S} =  \left[ \begin{array}{c} c t \\\ x \\\ y \\\ z  \end{array} \right] \\\)

Mit der Vektor-Basis ausgedrückt ist das:
\( \vec{S} = ct \cdot \vec{e_t} +  x \cdot \vec{e_x}  + y \cdot \vec{e_y} + z \cdot \vec{e_z} \\ \)

Entsprechend hätte man Vierer-Geschwindigkeit, Vierer-Impuls, Vierer-Beschleuigung etc.

In der Physik interessiert oft die Veränderung einer Größe mit der Zeit. Dazu müsten wir nach er Zeit differenzieren.

Der springende Punkt bei diesen “Vierer-Vektoren” ist aber nicht die eigentlich triviale Tatsache, dass die Vektoren vier Komponenten haben, sondern die Art und Weise, wie nach der Zeit differenziert wird. Die Zeit-Koordinate (“Koordinatenzeit”) ist ja in jedem Interialsystem eine andere, weshalb für die Differenzierung von Vierer-Vektoren nach der Zeit die sog. Eigenzeit (engl. proper time, Symbol τ) genommen wird. Wobei beim Differenzieren von dieser Vektoren genaugenommen die covariante Ableitung genommen wird.

Bei einer genaueren Definition des Begriffs “Vierer-Vektor” würde man noch die Invarianz der Vektor-Länge bei Lorenztransformationen fordern. Die Länge eines Vierer-Vektors ergibt sich dabei durch die Metrik.

Solche Vierervektoren spielen eine wichtige Rolle bei den Einsteinschen Feldgleichungen der ART.

Siehe auch: http://walter.bislins.ch/blog/index.asp?page=Bewegungsgleichung+der+Speziellen+Relativit%E4tstheorie

Eigenzeit in der Minkowski-Metrik

Als Eigenzeit (Symbol τ) eines bewegten Objekts (entlang einer beliebigen Weltlinie) bezeichnet man die Zeit, die eine “mitbewegte” Uhr  zeigt. Jede Weltlinie hat eine eigene Eigenzeit.
Wir werden sehen: Die Eigenzeit ist die auf einer Weltlinie gemessene Länge in der Minkowski-Metrik und deshalb auch Lorenz-invariant.

Im Gegensatz dazu ist die Zeitkoordinate (auch Koordinatenzeit) eben eine von vier Koordinaten im verwendeten Koordinatensystem und transformiert sich, wenn wir auf ein anderes Koordinatensystem übergehen.

Für den einfachen Fall eines Objektes, dass sich geradlinig mit konstanter Geschwindigkeit \( \vec{v} \) bezüglich unseres Bezugssystems (ct, x) bewegt, ist das ganz einfach. Dann ist die Weltlinie dieses Objekts eine Gerade in unserem Koordinatensystem und wir häten die Bewegung:

\(  x(t) = ||\vec{v}|| \cdot t \)

Wir können an ein solches Objekt dann ein Koordinatensystem (ct’, x’) “anheften”, was wieder ein Intertialsystem wäre. Man spricht vom “mitbewegten” System. Den Zusammenhang liefert die Lorenz-Transformation. Wenn wir jetzt einen Zeitabschnitt von \(\Delta t \) (in unserem Bezugssystem) betrachten, wäre die Frage. welche Zeit im mitbewegten Bezugssystem dann vergeht.

\( \Delta t^{\prime} = \sqrt{1-\frac{||v||^2}{c^2}} \cdot \Delta t \)

Wenn wir nun ein Objekt betrachten, dass sich nicht auf einer Geraden als Weltlinie bewegt, wäre ein mitbewegtes Bezugssystem kein Inertialsystem mehr. Die dort vergangene Zeitspanne von ta bis te, also die Eigenzeit, ergibt sich dann aufintegriert als:

\(  \tau =  \displaystyle\int\limits_{t_a}^{t_e} \sqrt{1-\frac{||v(t)||^2}{c^2}} \, dt \)

Diese Eigenzeit τ würde dann von allen Intertialsystemen aus gesehen gleich sein d.h. Lorenz-invariant.

Euklidische Vektoren

Im klassischen Eukidischen Raum (soll heissen ohne die SRT) haben wir es generell mit 3er-Vektoren zu tun:

Ortsvektor: \( \vec{r} = x \cdot  \vec{e_x} + y \cdot \vec{e_y} + z \cdot \vec{e_z} \)

Geschwindigkeit: \( \vec{u} = \frac{d \vec{r}}{d t} \)

Impuls: \( \vec{p} = m \cdot \vec{u} \)

Beschleunigung: \( \vec{a} = \frac{d^2 \vec{r}}{d t^2} = \frac{d \vec{u}}{d t} \)

Kraft: \( \vec{f} = \frac{d \vec{p}}{d t} = m \cdot \vec{a} \)

Minkowski-Vektoren

Wenn wir das Obige nun nach SRT und in beliebigen Inertialsystemen betrachten wollen, haben wir gleich ein Problem mit den Ableitungen nach der Zeit. In jedem Inertialsystem verläuft die Zeit (auch Koordinatenzeit genannt)  anders; d.h. die o.g. Größen sind nicht mehr Lorenz-invariant.

Lorenz-invariant sind zunächst:

  1. Die Lichtgeschwindigkeit: c
  2. Der Minkowski-Abstand zweier Ereignisse: \( S = c \cdot (t_2 – t_1) – (x_2 – x_1)^2 – (y_2 – y_1)^2 – (z_2 -z_1)^2   \)

Einerseits ist die Zeit eine Koordinate in der vierdimensionalen Raumzeit, andererseits können wir zeitliche Abstände zwischen zwei Ereignissen messen.

Anstelle der Zeit (Koordinatenzeit), die in allen Inertialsystem verschieden sein kann, definieren wir eine sog. Eigenzeit τ, die invariant sein soll. Danach können die das differenzieren und kämen zu invarianten Größen….

Bei den Minkowski-Vektióren (Vierervektoren) gehen wir aus vom Ortsvektor, der die Bewegung eines Massepunkts m in seiner Eigenzeit beschreibt (Weltlinie):

\( \vec{S} = ct \cdot \vec{e_t} +  x \cdot \vec{e_x}  + y \cdot \vec{e_y} + z \cdot \vec{e_z} \\ \)

Durch Differenzieren nach der Eigenzeit kommen wir dann zu:

Vierer-Geschwindigkeit: \( \vec{U} = \Large \frac{d\vec{S}}{d\tau} \)

Vierter-Impuls: \( \vec{P} = m \cdot \vec{U}  \)

Vierer-Beschleunigung: \( \vec{A} = \Large \frac{d^2\vec{S}}{d\tau^2} = \frac{d\vec{U}}{d\tau} \)

Vierer-Kraft: \( \vec{F} = \Large \frac{d\vec{P}}{d\tau} = m \cdot \vec{A} \)

Wie differenziere ich nun nach der Eigenzeit?

Vierer-Geschwindigkeit:

\( \Large \vec{U} =\frac{d\vec{S}}{d\tau} = \frac{d}{d\tau}(   ct \cdot \vec{e}_t +  x \cdot \vec{e}_x  + y \cdot \vec{e}_y + z \cdot \vec{e}_z    ) \)

In einem Inertialsystem sind die Basisvektoren konstant; d.h. die Ableitungen auch nach τ sind Null. Damit vereinfacht sich die Produktregel und wir erhalten:

\( \Large \vec{U} = \frac{d\vec{S}}{d\tau} = c \frac{dt}{d\tau} \vec{e}_t + \frac{dx}{d\tau} \vec{e}_x + \frac{dy}{d\tau} \vec{e}_y + \frac{dz}{d\tau} \vec{e}_z \)

Penrose-Diagramme

So ein Raum-Zeit-Diagramm nach Minkowski benutzt ja eine unendliche Ebene zur Darstellung. Durch eine geeignete Koordinatentransformation können wir so eine unendliche Ebene auf eine endliche Figur abbilden…

Roger Penrose (*1931)

Tangens

 

 

Mathematik: Was sind Tensoren?

Gehört zu: Mathematik
Siehe auch: QuantenmechanikVektorräume, Lineare Algebra, Koordinatensysteme, Metrik-Tensor, Kontravariante Ableitung
Benutzt: WordPress-Plugin Latex

Stand: 26.10.2021

Was sind Tensoren?

Eine der Voraussetzungen zum Verständnis vieler Dinge (z.B. in der Allgemeinen Relativitätstheorie und der Quantenmechanik) sind sog. Tensoren.

Der Begriff “Tensor” wurde im 19. Jahrhundert relativ unsystematisch bei verschiedenen physikalischen Berechnungen eingeführt.

Darüber gibt es schöne Youtube-Videos von “eigenchris”:  https://youtu.be/sdCmW5N1LW4

Als Vorbereitung dazu habe ich zuerst mal etwas zu Vektorräumen zusammengestellt.

Auffrischung

Wir hatten ja im Artikel über Vektorräume schon gesehen, dass Vektoren Objekte sind, die unabhängig von Koordinatensystemen exsistieren und auch gegenüber einem Wechsel von Koordinatensystemen “invariant” sind. Nur die Komponenten bzw. Koordinaten der Vektoren verändern sich dann, nicht aber die Vektoren selber.

Invarianz bedeutet allgemein gesagt, dass ein und dasselbe Objekt verschieden beschrieben (“repräsentiert”) werden kann von verschiedenen Standpunkten (Koordinatensystemen) aus.

Unsere Vektorkomponenten beruhen immer auf einer Menge von sog. Basisvektoren.

Wie verhalten sich dann Vektoren und ihre Komponenten bei einem Wechsel der Basisvektoren?

Im Gegensatz zum invarianten Vektor selbst, verändern sich seine Komponenten bei Änderung der Vektorbasis.

Wir sahen, dass wenn sich die Längen der Basisvektoren verlängern, sich die Komponenten von Vektoren verkleinern. Deshalb hatten wir diese Vektoren “kontravariant” genannt.

So ein kontravarianter Vektor ist ein erstes Beispiel für einen Tensor. Ein zweites Beispiel für einen Tensor sind die sog. Co-Vektoren…

Allgemein gesagt bedeutet Kontravarianz, dass wenn ein Ding größer wird, ein anderes Ding kleiner wird. Kovarianz dagegen bedeutet, dass die Veränderungen in die gleiche Richtung gehen.

Co-Vektoren

Im Gegensatz zu den “herkömmlichen” kontravarianten Vektoren, die wir als Spalte schreiben, schreiben wir Co-Vektoren als Zeilen.

Dazu hat “eigenchris” ein schönes Youtube-Video gemacht: https://youtu.be/LNoQ_Q5JQMY

In der Sichtweise von Koordinaten macht ein Co-Vektor also folgendes:

\( \Large  \left[  \begin{matrix} a & b & c  \end{matrix} \right] \cdot \left[ \begin{array}{r} x \\\ y \\\ z  \end{array} \right] = ax+by+cz \)

Abstrakt formuliert bildet ein Co-Vektor also Vektoren auf Skalare ab.

Rank 2 Tensoren

Generell soll ein Tensor ja invariant bei einer Koordinatentransformation sein.

Lediglich die “Darstellung” eines Tensors erfolgt mit Komponenten (Koordinaten).

Uns interessieren hier in erster Linie sog. Rank 2 Tensoren. Solche Rank 2 Tensoren können immer als “normale” Matrix mit Zeilen und Spalten dargestellt werden  (Zeilen und Spalten -> Rank 2). So ein Rank 2 Tensor kann aber auch ganz einfach in sog. Index-Schreibweise dargestellt werden z.B. Tij oder g μν (Anzahl Indices = Rank).

Transformationsverhalten

xyz

 

 

Computer: Mathematik – Vektorräume – Lineare Algebra

Gehört zu: Mathematik
Siehe auch: GrundlagenAlgebren, Matrizenrechnung, Tensor-Algebra, Relativitätstheorie, Metrik-TensorElektrisches Feld, Magnetisches Feld
Benutzt: WordPress-Plugin Latex

Stand: 27.11.2022  (Drehmoment, Archimedes, Skalarprodukt, Vektorbasis)

Youtube-Videos zur Vektor- und Tensorrechnung (für Physiker)

Youtube Videos von Prof. Wagner zur Vektor- und Tensorrechnung

  • VT I – 01 Affine und Euklidische Vektorräume:https://www.youtube.com/watch?v=NxQTRW-5vpk
  • VT I – 02 Inhalt und Winkel:https://www.youtube.com/watch?v=1cyrZZnhjjs
  • VT I – 03 Vektorbasen und Vektorkomponenten:https://www.youtube.com/watch?v=BD-Xb9Wj0I8
  • VT I – 04 Ko- und Kontravariante Vektorbasen:https://www.youtube.com/watch?v=XBMRx4rXPPg
  • VT I – 05 Anwendungen des Metriktensors:https://www.youtube.com/watch?v=okkfJEeEqk4
  • VT I – 06 Transformation zwischen Basen – Beispiele:https://www.youtube.com/watch?v=iieCaxYj2RQ
  • VT II – 01 Differentialoperatoren:https://www.youtube.com/watch?v=0tjWWS2DGmU&t=127s
  • VT II – 02 Anschauliche Interpretation der Differentialoperatoren:https://www.youtube.com/watch?v=Cyqahzn-cXw&t=3s
  • VT II – 03 Anwendungsbeispiele für Differtialoperatoren:https://www.youtube.com/watch?v=DfPGExmGRrs
  • VT II – 04 Kurven und Hyperflächen:https://www.youtube.com/watch?v=c07r4pARzHw
  • VT II – 05 Krummlinige Koordinaten:https://www.youtube.com/watch?v=yQlbJN8I6kk
  • VT II – 06 Krummlinige Koordinaten – Beispiele:https://www.youtube.com/watch?v=s1E_XeIgCpI&t=545s
  • VT II – 07 Transformationsverhalten, Tensoren:https://www.youtube.com/watch?v=srGlFECRijo&t=928s
  • VT II – 08 Bogenlänge von Kurven, Metrik:https://www.youtube.com/watch?v=2FCEKDMnKew&t=2075s
  • VT II – 09 Kovartiante Ableitung, Christoffel Symbole:https://www.youtube.com/watch?v=OnR5Ny47IXw
  • VT II – 10 Beispiele zur kovarianten Ableitung:https://www.youtube.com/watch?v=jQjsEK7GAVY
  • VT II – 11 Vektor-Differentaloperatoren in krummlinigen Koordinaten:https://www.youtube.com/watch?v=7PXs4_9RHWo&t=107s
  • VT II – 12 Eigenschaften der kovarianten Ableitung, Riemannscher Krümmungstensor:https://www.youtube.com/watch?v=I-OAGrUX580&t=429s
  • VT II – 13 Vom Riemannschen Krümmungstensor zu den Einsteinschen Feldgleichungen:https://www.youtube.com/watch?v=NqiV8SCtHCA&t=203s
  • VT II – 14 Geodätische Linien, Parallele Vektoren:https://www.youtube.com/watch?v=TfeTfqLa8vI

Vektorfelder und Skalarfelder

Was meint man mit dem Begriff “Feld”?

Das Wort “Feld” wird gerne gebraucht, wenn eigentlich eine ganz normale Abbildung (auch Funktion oder auch Verknüpfung genannt) gemeint ist – “just to confuse the Russians”.

Der Definitionsbereich so einer Abbildung ist ein “Raum”. Das kann ein sog. Euklidischer Raum oder auch eine Riemannsche Mannigfaltigkeit sein. Die Punkte (Orte) in so einem Raum kann man durch Koordinaten beschreiben.
Je nach dem ob der Wertebereich ein Vektorraum oder ein Körper (von Skalaren) ist, spricht man von “Vektorfeld” oder “Skalarfeld” und man schreibt gerne:

  • für ein skalares Feld: \( \Phi(r) \)
  • für ein Vektorfeld: \(  \vec{V}(r) \)

Wobei r ein Punkt aus dem Definitionsbereich ist (kein Vektor, sondern ein durch Koordinaten beschriebener Punkt)

Beispiele

  • Temperatur: Wenn wir jedem Punkt im Raume seine Temperatur zuordnen, haben wir ein Skalarfeld.
  • Höhe: Wenn wir jedem Punkt auf einer Landkarte die Höhe über dem Meeresspiegel zuordnen, haben wir ein Skalarfeld.
  • Wind: Wenn wir jedem Punkt auf einer Landkarte die Windrichtung und Windstärke zuordnen, haben wir ein Vektorfeld.
  • Gravitation: Wenn wir jedem Punkt im Raum die Richtung und Stärke der Gravitationskraft zuordnen (wäre mit einem kleinen Probekörper zu bestimmen), haben wir ein Vektorfeld, genannt Gravitationsfeld
  • Ein elektrisches Feld (ein Vektorfeld) gibt für jeden Punkt im Raum die Richtung und Stärke der elektrischen Kraft an, die auf ein kleines Probeteilchen der elektrischen Ladung +1 wirkt
  • Ein magnetisches Feld (ein Vektorfeld) gibt für jeden Punkt im Raum die Richtung und Stärke der magnetischen Kraft an, die auf ein kleines Probeteilchen wirkt

Visuelle Veranschaulichung von Feldern

Skalarfelder kann man beispielsweise durch Linien im Definitionsbereich, die alle einen gleichen Skalarwert haben, veranaschaulichen (z.B. Isotermen, Isohypsen etc.)

Vektorfelder veranschaulicht man sich gerne durch sog. “Feldlinien“; diese zeigen dann immer in die Richtung des Werte-Vektors. Beispiel: Feldlinien im Magnetfeld, die in Richtung der magnetischen Kraft zeigen…

Die Physiker sprechen gern von sog. Kraftfeldern. Der Begriff “Feld” hilft, die Vorstellung der Fernwirkung zu vermeiden (sagt Feynman). Die vier konzeptionellen Stufen der Kraftwirkung sind:

  • Die Kraft bewirkt eine Beschleunigung   (Newton)
  • Ein Feld bewirkt eine Kraft
  • Kraft durch Raumkrümmung (geometrische Vorstellung) (Einstein)
  • Kraft durch virtuelle Austauschteilchen

Eigenvektoren und Eigenwerte

Bei Linearen Abbildungen in den gleichen Vektorraum, also:

\(  f: V  \to V \\\)

sind Eigenvektoren dieser Linearen Abbildung Vektoren, die durch diese Abbildung nicht in ihrer Richtung verändert werden; d.h.:

\(  f(\vec{x}) = \lambda \vec{x} \\\)

und den Skalar λ nennt man dann den Eigenwert.

Häufig verwendet man Eigenvektoren und Eigenwerte, wenn die Lineare Abbildung durch eine Matrix beschrieben wird.

In der Quantenphysik spielt dies Konzept eine wichtige Rolle. Dort werden Eigenwerte als Messwerte bei einem Experiment interpretiert.

Das Skalarprodukt von Vektoren

Auf einem Vektorraum kann ein Skalarprodukt definiert sein (Vektor mal Vektor ergibt einen Skalar) –  Dies ist inspiriert aus der Physik durch Arbeit = Kraft mal Weg.

Vektorräume müssen aber nicht notwendig ein Skalarprodukt haben.

Wir werden sehen, dass so ein Skalarprodukt dann eine “Norm” induziert und damit eine Metrik, wodurch z.B. Grenzwertprozesse möglich werden.

Einen \(\mathbb{R}\)-Vektorraum mit Skalarprodukt nennt man auch einen Euklidischen Raum, einen \(\mathbb{C}\)-Vektorraum mit Skalarprodukt nennt man auch Hilbertraum – genauer Prähilbertraum.

Das innere Produkt zweier Vektoren v und w (auch Skalarprodukt oder Dot Product genannt) ist schreibt man:

\( \Large \vec{v} \cdot \vec{w} \) \( \Large \langle v,w \rangle \)

Definition des inneren Produkts

Man kann das innere Produkt geometrisch und anschaulich definieren oder aber auch mathematisch über Axiome.

Geometrische Definition

Unabhängig von einem Koordinatensystem – geometrisch definiert als:

\( \Large \vec{v} \cdot \vec{w} = ||  \vec{v} || \enspace || \vec{w} || \cos(\angle \left( \vec{v}, \vec{w} \right)) \)

Als Schlussfolgerung kann man die Länge eines Vektors auch per innerem Produkt darstellen als:

\( \Large || \vec{v} ||  = \sqrt{\vec{v} \cdot \vec{v}} \\\ \)

In einem chartesischen Koordinatensystem (s.u.) berechnet sich das innere Produkt (Skalarprodukt) der Vektoren

\( \Large \vec{v} = \left[ \begin{array}{c} v_1 \\\ v_2 \\\ v_3  \end{array} \right]  \) und   \( \Large \vec{w} = \left[ \begin{array}{c} w_1 \\\ w_2 \\\ w_3  \end{array} \right]  \)

als   \( \Large \vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3 \)

Soweit haben wir das innere Produkt (Skalarprodukt) zweier Vektoren durch Winkel und Länge anschaulich definiert. Wir können auch umgekehrt Länge und Winkel durch das Skalarprodukt definieren:

Länge:

\( \Large || \vec{v} ||  = \sqrt{\vec{v} \cdot \vec{v}} \\\ \)

Winkel:

\( \Large \cos(\angle \left( \vec{v}, \vec{w} \right))  = \frac{ ||  \vec{v} || \enspace || \vec{w} ||}{ \vec{v} \cdot \vec{w}    }  \)

Das funktioniert aber nur, wenn wir schon ein Skalarprodukt haben.

Sprechweise: Tensoren statt Vektoren und Matrizen

Die Tensoren und die Tensorrechnung stammen eigentlich aus der Physik und sind für ganz praktische physikalische Problemlösungen “erfunden” worden. Ein Tensor in diesem Sinne ist einfach ein indiziertes Objekt. Die Indizes laufen normalerweise von 1 bis n, der Dimensionszahl des Raumes in dem wir arbeiten.

Ein Objekt mit einem Index wäre ein Tensor der Stufe 1, ein Objekt mit zwei Indizes ein Tensor 2. Stufe etc. Die “Objekte”, die man indiziert sind meist Reelle oer Komplexe Zahlen – allgemein gesagt Elemente eines Körpers – die man auch Skalare nennt.

Einen Tensor 1. Stufe schreibt man gerne \( a_i \) also mit einem Index – meist unten aber manchmal auch oben \( a^i \) .

Man kann so einem Tensor 1. Stufe auch einen Vektor zuordnen, wobei die indizierten Größen dann die Komponenten eines Vektors zu einer bestimmten Vektorbasis (s.u.) werden. Wenn man so einen Vektor meint, schreibt man das Ganze in Klammern – womit dann alle Komponenten des Tensors gemeint sind:

\( (a_i)  \)

Einen Tensor 2. Stufe schreibt man gerne \( {a_i}^j \) also mit zwei Indizes – teilweise unten und teilweise auch oben.

Man kann so einem Tensor 2. Stufe auch eine Matrix zuordnen, wobei die indizierten Größen dann als Zeilen und Spalten in der Matrix abgelegt werden. Wenn man so eine Matrix meint, schreibt man das Ganze in Klammern (da sind dann eben alle Komponenten drin):

\( ({a_i}^j) \\\ \)

Bei mehreren Indizes (also Tensoren der Stufe 2 und höher) ist es wichtig, dass die Reihenfolge der Indizes immer ersichtlich ist. Verwechselungsgefahr besteht ja speziell wenn man Indizes unten und oben hinschreibt.

Wenn ich zwei Tensoren 2. Stufe habe, kann ich die zugehörigen Matrizen ganz einfach multiplizieren indem wir mit der Einsteinschen Summenkonvention über den inneren Index (hier j) summieren:

\( ({a_i}^j)({b_j}^k) = ({a_i}^j \cdot {b_j}^k) \)

=========================================

Eigenschaften von Vektoren

Aus geometrischer und intuitiver Sicht spricht man auch von Längen und Winkeln:

  • Für die Länge eines Vektors (man sagt auch “Norm”) schreibt man:  \( \Large ||  \vec{v}  ||  \)
  • Für den Winkel zwischen zwei Vektoren schreibt man: \( \Large  \angle \left( \vec{v}, \vec{w} \right)  \)

Das äußere Produkt von Vektoren

Das äußere Produkt zweier Vektoren (auch Vektorprodukt oder Kreuzprodukt genannt) ist definiert als ein Vektor:

\( \Large \vec{v} \times \vec{w} = \vec{u} \)

Der Vektor u steht senkrecht auf beiden Vektoren v und w und hat die Länge \( \Large ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin(\angle \left( \vec{v}, \vec{w} \right)) \)

In einem chartesischen Koordinatensystem (s.u.) berechnet sich das äußere Produkt (Vektorprodukt) der Vektoren

\( \Large \vec{v} = \left[ \begin{array}{c} v_1 \\\ v_2 \\\ v_3  \end{array} \right]  \) und   \( \Large \vec{w} = \left[ \begin{array}{c} w_1 \\\ w_2 \\\ w_3  \end{array} \right]  \)

als   \( \Large   \vec{v} \times \vec{w} =   \left[ \begin{array}{c} v_2 w_3 – v_3 w_2  \\\ v_3 w_1 – v_1 w_3  \\\ v_1 w_2 – v_2 w_1  \end{array} \right]        \)

Anwendungen

Eine Anwendung für das Kreuzprodukt ist beispielsweise die Kreisbewegung, wo sich die Bahngeschwindingkeit aus Winkelgeschwindigkeit ω und Radius r wie folgt ergibt:

\( \vec{v} = \vec{\omega} \times \vec{r} \\ \)

Bei der Rotation ergibt sich das sog. Drehmoment \(\vec{M}\)  aus dem Kraftvektor \(\vec{F}\) und dem Ortsvektor \( \vec{r} \) vom Bezugspunkt zum Angriffspunkt der Kraft:

\( \vec{M} = \vec{r} \times \vec{F} \)

Hierin steckt auch das aus der Schulzeit bekannte Hebelgesetz (Archimedes von Syrakus 287 v.Chr. – 212 v.Chr.): Kraft mal Kraftarm = Last mal Lastarm

Algebren

Ein Vektorraum V über einem Körper K zusammen mit einer bilinearen Abbildung:

\(  V \times V \to V \)

wird eine Algebra genannt.

Die bilineare Abblidung wird “Produkt” genannt und auch so wie ein Produkt hingeschrieben; also:  a · b  oder einfach ab. In dieser Schweibweise bedeutet die Bilinearität einfach folgendes:

\(   (x + y) \cdot z = x \cdot z + y \cdot z  \\\ \)

 

\(   x \cdot (y + z)  = x \cdot y + x \cdot z  \\\ \)

 

\( a (x \cdot y) = (ax) \cdot y = x \cdot (ay) \\\ \)

Das “besondere” an Algebren ist die “Multiplikation”. Deswegen unterscheidet man  Algebren auch nach den Eigenschaften dieser Multiplikation:

Kommutative – nicht-kommutative Algebren: Ist immer \( a \cdot b  =  b \cdot a \) oder nicht?

Assoziative – nicht-assoziative Algebren: Ist immer \( a \cdot (b \cdot c) = (a \cdot b) \cdot c \) oder nicht?

Beispiele:

Die n × n Matrizen über einem Körper mit der gewöhnlichen Matrizenmultiplikation als “Multiplikation” bilden eine (assoziative) Algebra.

Hilbertraum und Operatoren

Ein Vektorraum über \(\mathbb{R} \) oder \(\mathbb{C} \) mit einem Skalarprodukt heisst “Prä-Hilbertraum”. Wenn so ein “Prä-Hilberraum” auch noch “vollständig” ist; d.h. jede Cauchy-Folge konvergiert (bezüglich der Metrik), dann hat man einen echten Hilbertraum; Nach David Hilbert (1862-1943).

Abbildungen von einem Hilbertraum in sich selbst heissen auch “Operatoren“.

Beispiel: Differentialoperatoren

Koordinatensystem, Dimension

In einem Vektorraum V kann ich viele Koordinatensysteme haben. Jedes Koordinatensystem ist bestimmt durch eine Menge sog. Basis-Vektoren.

Dann kann jeder Vektor des Vektorraums als sog. Linearkombination aus den Basis-Vektoren dargestellt werden kann. Eine solche “Linearkombination” ist eine Summe von Basis-Vektoren, die mit geeigneten Skalaren multipliziert wurden.

Beispiel für eine Linearkombination:

\( \Large a  \vec{v} + b \vec{w} + c \vec{u} \)

Ganz genau genommen, spannt eine Basis nicht nur den ganzen Vektorraum auf (das wäre ein Erzeugendensystem), sondern enthält dabei eine minimale Anzahl von Vektoren (was äquivalent ist mit der eindeutigen Darstellung aller Vektoren des Vektorraums in Form von Linearkombinationen).

Beispiel für eine Basis (im Vektorraum \(\mathbb{R}^3\) ):

\( \hat{i} =\left[ \begin{array}{c} 1 \\\ 0 \\\ 0  \end{array} \right]   \hat{j} =\left[ \begin{array}{c} 0 \\\ 1 \\\ 0  \end{array} \right] \hat{k} =\left[ \begin{array}{c} 0 \\\ 0 \\\ 1  \end{array} \right] \)

Und man schreibt dann auch gerne:

\( \Large \vec{v} = \left[ \begin{array}{c} x \\\ y \\\ z  \end{array} \right] = x \hat{i} + y \hat{j} + z \hat{k}\)

Ein Vektorraum kann mehrere Basen haben, die jeweils ein Koordinatensystem definieren. Dabei werden die Koordinaten (Komponenten) ein und desselben Vektors in verschiedenen Koordinatensystem auch verschieden sein, der Vektor selbst aber ist “invariant”. Wenn man einen Vektor als Liste von Koordinaten hinschreibt, muss man immer sagen. welche Basis gemeint ist.

Ein Vektorraum kann mehrere Basen haben, aber die Anzahl der Vektoren in einer Basis ist immer die gleiche. Diese Anzahl nennt man “Dimension” des Vektorraums und schreibt:

Dimension des Vektorraums V: dim(V)

Beschreibung durch Basis-Vektoren: Lineare Transformationen

Eine Lineare Transformation kann eindeutig beschrieben werden durch die Werte auf die die Basis-Vektoren abgebildet (transformiert) werden.

Beispielsweise heisst das im Vektorraum \(\mathbb{R}^2\) mit dem kanonischen Koordinatensystem und den Basisvektoren \( \hat{i} \) und \( \hat{j}  \) folgendes:

Wenn wir einen Vektor \( \vec{v} = \left[ \begin{array}{c} x \\\ y  \end{array} \right] = x \hat{i} + y\hat{j} \) betrachten, so wirkt eine Lineare Transformation L wie folgt:

\( L(\vec{v}) = x L(\hat{i}) + y L(\hat{j} )  \)

Wenn wir also die transformierten Basisvektoren \( L(\hat{i}) \) und \( L(\hat{j}) \)  kennen, ist damit die Lineare Transformation L vollständig festgelegt.

Diese transformierten Basis-Vektoren können im verwendeten Koordinatensystem als Matrix schreiben.

Wenn bei unserer Linearen Transformation beispielsweise \( L(\hat{i}) = \left[ \begin{array}{c} 3 \\\ -2  \end{array} \right] \)   und \( L(\hat{j}) = \left[ \begin{array}{c} 2 \\\ 1  \end{array} \right] \)  wäre, bekämen wir eine Matrix:

\(\left[ \begin{array}{rr} 3 & 2 \\  -2 & 1 \\  \end{array} \right] \)

Wir schreiben also in den Spalten der Matrix die transformierten Basisvektoren.
Die Lineare Transformation könnte im benutzten Koordinatensystem als Matrixmultiplikation aufgefasst werden:

\(\left[ \begin{array}{rr} 3 & 2 \\  -2 & 1 \\  \end{array} \right]  \left[ \begin{array}{c} x \\\ y  \end{array} \right] = x  \left[ \begin{array}{c} 3 \\\ -2  \end{array} \right] + y  \left[ \begin{array}{c} 2 \\\ 1  \end{array} \right] = \left[ \begin{array}{c} 3x+2y \\\ -2x+1y  \end{array} \right]\)

Völlig analog werden auch Lineare Transformationen in drei oder mehr Dimensionen behandelt.

Beschreibung durch Basis-Vektoren: Wechsel von Koordinatensystemen

Wenn wir zwei Koordinatensysteme betrachten, dann haben die also zwei Basen (wir nennen sie “alte Basis” und “neue Basis”). Intuitiv ist klar, dass wenn die neue Basis z.B. längere Basisvektoren hat, dann sind die Vektorkomponenten kürzer (weil ja der gleiche Vektor wieder herauskommen soll). Die Vektorkomponenten verhalten sich also “umgekehrt” wie die Längen der Basisvektoren. Deshalb nennt man diese Vektoren “kontravariant“.

Wir können das auch haarklein ausrechnen:

  • Die “alte Basis” sei: \( \vec{e}_i  \)
  • Die “neue Basis” sei: \( \tilde{\vec{e}}_i  \)

Dann transformieren sich die Basisvektoren wie folgt:

Alt -> Neu (“Foreward”):

\(  \tilde{\vec{e}}_i =  \sum\limits_{k=1}^{n} F_{ki} \vec{e_k}\)

Neu -> Alt (“Backward”):

\(  \vec{e}_i =  \sum\limits_{j=1}^{n} B_{j i} \widetilde{\vec{e_j}}\)

Für die Komponenten eines Vektors \( \vec{v} \) gilt dann die umgekehrte Richtung (deshalb nennt man sie “kontravariant“)

Alt -> Neu:

\( \tilde{v_i} = \sum\limits_{j=1}^{n} B_{ij} v_j  \)

Neu -> Alt

\( v_i = \sum\limits_{j=1}^{n} F_{ij}\tilde{v_j}   \)

Berechnung der Länge eines Vektors aus seinen Komponenten

Länge eines Vektors im Chartesischen Koordinatensystem

Wir sind ja gewöhnt, die Länge eines z.B. dreidimensionalen Vektors über seine Koordinaten und den Lehrsatz des Pythagoras zu berechnen:

Im Beispiel sei der Vektor \( \Large \vec{v} = \left[ \begin{array}{c} v_1 \\\ v_2 \\\ v_3  \end{array} \right] \)

Dann wäre die Länge dieses Vektors gegeben durch: \( || \vec{v} ||= \sqrt{v_1^2 + v_2^2 + v_3^2} \)  (der gute alte Pythagoras)

In verschiedenen Koordinatensystemen würde dieser Vektor aber mit verschiedenen Koordinaten (Komponenten) beschrieben und es würden mit obiger Formel dann unterschiedliche Längen heraus kommen.

Uns ist ja klar, dass wir zu den Koordinaten (Komponenten) eines Vektors auch immer angeben müssen, in welchem Koordinatensystem diese gemessen werden; d.h. wir müssen zu den Koordinaten die dazugehörige Basis angeben – und berücksichtigen.

Wenn wir als Basis allgemein schreiben: \( \vec{e}_i  \)

dann können wir mit den Komponenten unseres Vektors zu dieser Basis schreiben:

\( \Large \vec{v} = \left[ \begin{array}{c} v_1 \\\ v_2 \\\ v_3  \end{array} \right] = v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3\)

Im Spezialfall der orthonormalen Basis:

\( \vec{e}_1 = \hat{i}, \vec{e}_2 = \hat{j}, \vec{e}_3 = \hat{k}   \)

hätten wir die Länge unseres Vektors nach Pythagoras (s.o.); mit den Koordinaten zu einer anderen Basis müssten wir umrechnen…

Länge eines Vektors in einem beliebigen Koordinatensystem

Wir hatten die Länge eines Vektors unabhängig von einem Koordinatensystem (also invariant) definiert über:

\( \Large {||  \vec{v}  ||}^2 = \vec{v} \cdot \vec{v} \\\)

Wir nehmen jetzt ein beliebiges Koordinatensystem definiert durch seine Basisvektoren \( \vec{e}_i\).
Dann können wir die Länge des Vektors wie folgt aus seinen Komponenten (Koordinaten) berechnen:

\( \Large  ||  \vec{v} ||^2 = (v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3) \cdot(v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3) \\ \)

Wenn wir das ausmultiplizieren bekommen wir:

\( \Large ||  \vec{v} ||^2 =  \sum\limits_{ij} v_i v_j  \enspace \vec{e}_i \cdot \vec{e}_j \\ \)

Um die Länge eines Vektors in einem beliebigen Koordinatensystem zu ermitteln, benötigen wir also “lediglich” alle Kombinationen der inneren Produkte der Basisvektoren dieses Koordinatensystems; d.h. alle \( \vec{e}_i \cdot \vec{e}_j \)

Als Matrix können wir diese Produkte so hinschreiben:

\(\Large g =  \left[ \begin{array}{rrr} \vec{e}_1 \cdot \vec{e}_1 & \vec{e}_1 \cdot \vec{e}_2 & \vec{e}_1 \cdot \vec{e}_3\\  \vec{e}_2 \cdot \vec{e}_1 & \vec{e}_2 \cdot \vec{e}_2 & \vec{e}_2 \cdot \vec{e}_3 \\  \vec{e}_3 \cdot \vec{e}_1 & \vec{e}_3 \cdot \vec{e}_2 & \vec{e}_3 \cdot \vec{e}_3 \end{array} \right]  \\\)

Diese Matrix g nennt man auch den Metrik-Tensor des Koordinatensystems.

Mit Hilfe dieses Metrik-Tensors ergibt sich dann die Länge des Vektors \(\vec{v}\) ganz einfach als Matrixprodukt:

\(\Large || \vec{v} ||^2  =  \left[ \begin{array}{c} v_1 & v_2 & v_3  \end{array} \right]  g  \left[ \begin{array}{c} v_1 \\\ v_2 \\\ v_3  \end{array} \right] \\\)

Ganz allgemein kann man mit diesem Metrik-Tensor das innere Produkt zweier Vektoren aus den Komponenten berechnen:

\( \Large \vec{v} \cdot \vec{w} =  \left[ \begin{array}{c} v_1 & v_2 & v_3  \end{array} \right]  g  \left[ \begin{array}{c} w_1 \\\ w_2 \\\ w_3  \end{array} \right] \)

Das funktioniert, weil der Metrik-Tensor nicht “irgendeine” Matrix ist, sondern “invariant” ist; d.h. unabhängig vom gewählten Koordinatensystem kommt immer das gleiche Ergebnis heraus.

Der Metrik-Tensor

Der Metrik-Tensor definiert also eine (bilineare) Abbildung:

\(  g: V \times V \to \mathbb{R} \\\)

Ein Metrik-Tensor ist eine spezielle Bilineare Abbildung, die erstens symmetrisch ist und zweitens immer positive Werte liefert.

Dies ist auch im Prinzip der Metrik-Tensor, der in den Einsteinschen Feldgleichungen als \( g_{\mu \nu} \) vorkommt.

Oben hatten wir das innere Produkt zweier Vetoren ja versucht unabhängig von einem Koordinatensystem zu definieren.
Man kann das Ganze nun aber auch umgekehrt “aufzäumen”.  Wenn wir einen Vektorraum und eine Basis haben (damit also ein Koordinatensystem), brauchen wir nur noch einen Metrik-Tensor “g” und können damit ein inneres Produkt zwischen zwei Vektoren v und w als schlichte Matrix-Multiplikation definieren:

\( \Large \vec{v} \cdot \vec{w} =  \vec{v}^T   \enspace g  \enspace \vec{w} \\ \)

Wobei das hochgestellte T “transponiert” meint. So wird aus einem Spaltenvektor ein Zeilenvektor.

Beispielsweise definiert der folgende Metrik-Tensor die übliche Metrik für alle Koordinatensysteme mit einer orthonormaler Basis – denn das innere Produkt verschiedener Basisvektoren ist Null (weil orthogonal) und das innere Produkt eines Basisvektors mit sich selbst ist 1 (weil Länge 1):

\(\Large g =  \left[ \begin{array}{rrr} 1 & 0 & 0\\  0 & 1 & 0 \\  0 & 0 & 1 \end{array} \right]  \\\)

Das gilt z.B. für ein “normales” Koordinatensystem im Euklidischen Raum.
Mit dieser Metrik ist die Länge eines Vektors also:
\( || \vec{v} ||^2 = v_1^2 + v_2^2 + v_3^2 \)
und diese Länge ist invariant gegenüber Koordinatentransformationen.

Und eine Minkowski-Metrik wird definiert durch den Metrik-Tensor:

\(\Large \eta =  \left[ \begin{array}{rrrr} 1 & 0 & 0 & 0\\  0 & -1 & 0  & 0\\  0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1\end{array} \right]  \\\)

Mit dieser Metrik wäre die Länge eines Vektors also gegeben durch:

\( || \vec{v} ||^2  =  v_1^2 – v_2^2 – v_3^2 – v_4^2\)

Diese so definierte Länge wäre invariant gegenüber Lorentz-Transformationen, die wir später in der Speziellen Relativitätstheorie kennenlernen werden.

Was ist ein Tensor?

Der oben beschriebene Metrik-Tensor ist ein Tensor vom Rank 2. D.h. eine zweidimensionale (also “normale”) Matix, die sich bei Transformation der Koordinatensysteme “freundlich” verhält, sodass wir von “Invarianz” sprechen können.

Allgemein und formal ist ein Tensor T eine multilineare Abbildung von einem cartesischen Produkt von Vektorräumen über einem gemeinsamen Körper von Skalaren in diesen Skalaren-Körper:

\( T: V_1 \times V_2 \times … \times V_n \to K \)

Wobei die \(V_i\) Vektorräume über K sind.

Das allgemeine Thema “Tensor” ist mathematisch vielschichtig, deshalb habe ich begonnen, einen separaten Artikel darüber zu geschrieben.

Link: https://youtu.be/8ptMTLzV4-I

Determinante und Rank

Diese Konzepte werden in Video 6 und Video 7 behandelt.

Bei einer Linearen Transformation wird die Fläche des Quadrats aus den Basisvektoren  um einen Faktor “transformiert”. Damit wird auch jede beliebige Fläche um diesen Faktor “transformiert”. Diesen “Faktor” nennen wir die Determinante der Linearen Transformation.

Entsprechend ist das auch in höheren Dimensionen z.B. mit drei Dimensionen, wo die Größe des Volumens transformiert wird.

Eine negative Determinante bedeutet, dass sich bei der linearen Transformation die “Orientierung” des Vektorraums umkehrt.

Der Rank meint die Dimension des Ausgaberaums einer Linearen Transformation. Wenn der Rank einer Transformation nicht die volle Dimension (“full rank”) unseres Vektorraums ist, ist die Determinante dieser Transformation natürlich Null, aber der Rank kann etwas differenzierter aussagen was da los ist z.B. der Rank einer 3-dimensionalen Matrix (Transformation) könnte 2 sein, dann ist der Ausgaberaum eine Ebene (2 Dimensionen), wenn der Rank 1 wäre, hätten wir als Ausgaberaum eine Linie (eine Dimension) etc. Dieser “Ausgaberaum” wird auch “Column Space” genannt, weil die Spaltenvektoren diesen aufspannen…

 

Computer: Mathematik – Statistik

Mathematik: Statistik (aus Wiki)

Immer wieder werde ich als gelernter Mathematiker nach elementaren Themen der Statistik gefragt.

Ich habe einen schönen Einführungskurs in die Statistik bei der Universität Newcastle, Australien, gefunden:

http://www.anu.edu.au/nceph/surfstat/surfstat-home/t-table.html

http://www.anu.edu.au/nceph/surfstat/surfstat-home/

Statistik

Typen von Variablen (“Metriken”)

Qualitativ / Quantitativ

Man spricht von “qualitativen” Variablen, wenn die Beobachtungen durch Kategorien beschrieben werden.
Beispiele:

  • Augenfarbe: braun, grau, blau,…
  • Delivery Model: insourced, outsourced
  • Performance Rating: Less than Acceptable, Inconsistent, Fully Successful, Exceeds, Exceptional

Eine qualitative Variable heist “ordinal”, wenn es eine natürliche Reihenfolgebeziehung zwischen den Kategorien gibt, (Beispiel: Performance Rating).

Eine qualitative Variable heisst “nominal”, wenn es keine natürliche Reihenfolgebeziehung gibt, (Beispiel: Augenfarbe).

Man spricht von “quantitativen” Variablen, wenn die Beobachtungen durch numerische Werte beschrieben werden, d.h. durch Zählen oder Messen zustande kommen.
Beispiele:

  • Alter
  • Körpergröße
  • Anzahl Personen im Haushalt
  • Anzahl gerauchter Zigaretten am Tag
  • Einkommen im Jahr

Eine quantitative Variable heisst “diskret”, wenn die Beobachtungen ganzzahlige Werte sind (Beispiel: Anzahl Personen im Haushalt).

Eine quantitative Variable heisst “stetig” (continous), wenn sie durch (im Prinzip) beliebige Zahlen dargestellt wird (Beispiel: Körpergröße).

Normalverteilung mit Perzentil

Fragestellung zu einer Normalverteilung N(My,Sigma):

  • Gegeben sei My und P25
  • Gesucht ist Sigma
  • Lösung: sigma = (P25 – My) / NormInv(0,25; 0; 1)

Im übrigen gilt sowieso: P25 = NormInv(0,25; My; Sigma)

Logarithmische Normalverteilung

Zur Logarithmischen Normalverteilung habe ich einen gesonderten Artikel geschrieben.

Beta-Verteilung

Zur Beta-Verteilung habe ich einen gesonderten Artikel geschrieben.

— Dkracht 12:29, 24 March 2008 (CET)

Computer: Tagging (aus Wiki)

Tagging (aus Wiki)

Gehört zu: Metadaten
Siehe auch: JPG, MP3, MP4

Tags sind Keywords, die einen Gegenstand näher beschreiben (Metadaten).

Wenn jeder seine eigenen Tags macht, kann man das nicht zusammen auswerten. Technorati (Legacy) bietet eine Dienst zur Standardisierung von Tags.

Tagging wird angewendet bei:

Fragen zu Tagging:

Beim Social Bookmarking geht es um Link-Sammler (Link-Management), die dann aber social werden, also öffentlich zugänglich und modifizierbar und auswertbar (z.B. most popular, recent,…).

Dkracht 13:06, 9 February 2008 (CET)

Computer: Log-Normalverteilung (aus Wiki)

Log-Normalverteilung (aus Wiki)

Gehört zu: Mathematik
Siehe auch: Statistik
Die “Logarithmische Normalverteilung”, kurz auch “Log-Normalverteilung” genannt, ist eine Wahrscheinlichkeitsverteilung ohne negative Werte (der Logarithmus ist immer > 0). Aussderdem ist sie nicht symmetrisch (wie die klassische Normalverteilung, die Gaussche Glockenkurve sondern läuft zu den hohen Werten flacher aus.

Die Idee ist, das sich z.B. Preise log-normal verteilen, wenn die Rediten normalverteilt sind.

Formeln

— Dkracht 07:55, 20 October 2008 (CEST)

Retrieved from my Wiki

Computer: Beta-Verteilung (aus Wiki)

Beta-Verteilung (aus Wiki)

Gehört zu: Mathematik, Statistik
Siehe auch: Collected Excel Sheets
Benutzt: Google Docs

Beta-Verteilung

Keywords: DreiPunktMethode

Eine Beta-Verteilung ist durch die Parameter:

  • a = unterer Wert (Min)
  • b = oberer Wert (Max)
  • m = höchster Wert (Modalwert)

vollständig bestimmt.

Man kann errechnen:

  • Erwartungswert my = (a + 4*m + b) / 6 (Näherungswerte ?????)
  • Varianz sigma quadrat = ((b – a)/6)**2

Formel für die Beta-Verteilung:

  • f(x) = (Gamma(alpha+beta)/(Gamma(alpha)*Gamma(beta)))*(x^(alpha-1))*((1-x)^(beta-1))
  • In Excel ist: Gamma(x) = exp(gammaln(x))
  • In Excel ist die CDF (cummulative distribution function): BETADIST(x;alpha;beta;a;b)

Beispiel

Google Docs (Sheets): Die Beta-Verteilung in Excel

— Main.DietrichKracht – 04 Jul 2007

Retrieved from my Wiki

Astronomie: Sphärische Trigonometrie

Gehört zu: Mathematik
Siehe auch: Tägliche Bewegung der Gestirne, Diagramme, Tageslänge, Koordinatensystem
Benötigt: WordPress Latex-Plugin, WordPress Plugin Google Drive Embedder

Was ist Sphärische Trigonometrie?

Die Ebene Trigonometrie ist die Lehre von den Dreiecken in der Ebene.

Die Sphärische Trigonometrie ist die Lehre von den Dreiecken auf einer Kugeloberfläche. Solche Dreiecke werden durch Abschnitte von Großkreisen gebildet.

Das Polar-Dreieck auf der Himmelskugel

Zur Umrechnung eines Koordinatensystems in ein anderes zeichnet man sich ein sog. Polar-Dreieck, in dem die “Pole” (“Drehpunkte”) beider Koordinatensysteme vorkommen.

Zur Umrechnung der äquatorialen Koordinaten Deklination (δ) und Stundenwinkel (t) in die horizontalen Koordinaten Höhe (h) und Azimuth (A) wird das sog. Polar-Dreieck wird gebildet durch den Himmelspol (N), den Zenit (Z) und ein Himmelsobjekt (O).

Im Polardreieck sind die Abstände (Bogenlängen):

  • vom Himmelspol zum Zenit: 90° – φ
  • vom Himmelspol zum Himmelsobjekt: 90° – δ
  • vom Zenit zum HImmelsobjekt: z = 90° – h

Im Polardreieck sind die Winkel an den Ecken des Dreiecks:

  • Winkel am Himmelspol: Stundenwinkel t (oder τ)
  • Winkel am Zenith: 180°  – A   (A = Azimuth von Süden)

Abbildung 1: Das Polardreieck (Google Drive: polardreieck.svg)

polardreieck.svg

Polardreieck

Link: https://de.wikibooks.org/wiki/Astronomische_Berechnungen_f%C3%BCr_Amateure/_Druckversion#Koordinatentransformationen

MIt dem Seiten-Cosinussatz errechnet man den Cosinus der Länge einer Seite aus den Längen der beiden anderen Seiten und dem gegenüberliegenden Winkel:
\(\cos z = \cos (90° – \phi) \cos (90° – \delta) + \sin (90° – \phi) \sin (90° – \delta) \cos t\)

Was schließlich heisst:
\(\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t \)

Der Cotangens-Satz im Polardreieck sagt:

\(   \cos (90° – \phi)  \cos t = \sin(90° – \phi) \cot (90° – \delta) – \sin t \cot(180° – A)  \)

Trigonometrisch umgeformt ergibt das:
\(  \sin \phi \cos t = \cos \phi \tan \delta – \Large\frac{\sin t}{\tan A}  \)

Aufgelöst nach A ergibt sich:

\(   \tan A = \Large\frac{\sin t}{\sin \phi \cos t – \cos \phi \tan \delta} \)

MIt Hilfe dieser Koordinatentransformation kann man für jedes bekannte Himmelsobjekt (Deklination und Rektaszension) die scheinbare tägliche Bewegung am Himmel berechnen – siehe dazu: Die scheinbare tägliche Bewegung der Gestirne.

Großkreise auf einer Kugel

Wenn ich im obigen Polardreieck h=0 setze, erhalte ich einen gekippten Großkreis (oBdA setze ich t = λ).

\(\Large \frac{\sin{\delta}}{\cos{\delta}} = – \frac{\cos{\varphi}}{sin{\varphi}} \cdot \cos{\lambda}  \)

Abbildung 2: Beispiel eines Großkreises auf der Erde (Google: xyz)

grosskreis-01.svg

Großkreis auf der Erdoberfläche

Bei der Seefahrt bezeichnet man die Navigation auf einem Kurs entlang eines Großkreises als “Orthodrome” (Gegensatz: Loxodrome).

Mehr dazu: https://www.navigareberlin.de/onewebmedia/Grosskreisnavigation%20Ver%C3%B6ffentlichung.pdf

Metrik auf einer Kugeloberfläche

Für eine Kugel mit dem Radius r kann ich auf der Kugeloberfläche (z.B. Erdoberfläche) ein Koordinatensystem (s.o.) benutzen:

  • Koordinatensystem (λ, \( \varphi \))
  • wobei im Bogenmass: \( \Large -\frac{\pi}{2} < \varphi < \frac{\pi}{2} \)
  • und auch im Bogenmass: \( \Large 0 \leq \lambda < 2\pi \)

Zur Messung von Abständen (Längen) benötige ich ein LInienelement:

\(\Large ds^2 = r^2 d \varphi^2 + r^2 \cos{\varphi}^2 d\lambda^2 \)

Die kürzeste Verbindung zweier Punkte liegt dann auf einem sog. “Großkreis” (s.o.).

Beispiel 1 (gerade)

Die Strecke von (0.0) nach (π, 0); das ist ein halber Erdumfang am Äquator) müsste eine Länge von π r haben. Da auf der ganzen Strecke φ konstant =0 ist, ist auch dφ = 0 und es  ergibt sich als Längenintegral:

\( \Large s = r \int\limits_{0}^{\pi} d \lambda = r \cdot \left[ \lambda \right]_0^\pi  = \pi \cdot r\)

Beispiel 2 (gerade)

Die Strecke von (0,0) nach (0, π/2) ist ein Viertel Erdumfang vom Äquator zum Nordpol (ein sog. Quadrant) die Länge müsste also \(r \frac{\pi}{2} \) sein. Da auf der ganzen Strecke λ konstant =0 ist, ist auch dλ=0 und es ergibt sich als Längenintegral:

\( \Large s = r \int\limits_{0}^{\frac{\pi}{2}} d \varphi = r \cdot \left[ \varphi \right]_0^{\frac{\pi}{2}}  = r \cdot \frac{\pi}{2}\)

Beispiel 3 (schräg)

Aus dem obigen “Polardreieck” wird das “nautische Grunddreick“, wo wir wieder den Seiten-Cosinussatz anwenden können, um die Distanz zu berechnen. Die Distanz d zwischen einem Ausgangspunkt \( A = (\lambda_A, \varphi_A) \) zu einem Endpunkt \( B = (\lambda_B, \varphi_B) \) können wir also berechnen als:

\(\Large \cos{d} = \sin{\varphi_A} \sin{\varphi_B} + \cos{\varphi_A} \cos{\varphi_B} \cos{(\lambda_B – \lambda_A)} \ \\ \)

Die Strecke von (0, π/3) nach (π, 0) läuft jetzt “schräg” über unser Koordinatensystem…

\(\Large \cos{d} = \sin{\frac{\pi}{3}} \sin{0} + \cos{\frac{\pi}{3}} \cos{0} \cos{\pi}\)

Das ergibt: \( \Large \cos{d} = \frac{1}{2}\sqrt{3} \cdot 0 + \frac{1}{2} \cdot 1 \cdot (-1) = -\frac{1}{2} \\\ \)

und damit ist die gesuchte Distanz  \( d = \frac{2}{3} \pi \)

Um diese Distanz aus unserem Linienelement zu ermitteln, müssen wir das Linienelement entlang des Bogens von A nach B integrieren.

Dafür wollen wir den Weg zuerst als Funktion \( \varphi = f(\lambda) \) aufschreiben.

Physik: Quantenmechanik

Gehört zu: Physik Siehe auch: Kosmologie, Teilchenphysik, Von Pythagoras bis Einstein, Lineare Algebra, Plancksches Strahlungsgesetz Benötigt: WordPress Latex-Plugin, Fotos von Wikipedia Stand: 22.08.2024   (Doppelspalt-Experiment, Compton-Streuung, Observable)

Der Weg der Quantenmechanik

Im Jahr 1900 formulierte Max Planck (1858-1947) sein Strahlungsgesetz und seine Quantenhypothese. Erst um 1925 entwickelte sich daraus eine Quantentheorie/Quantenmechanik, die die physikalische Systeme im Kleinen (z.B. Elementarteilchen, Atome,…). gut beschreibt. Wesentliche Etappen sind:

Klassische Mechanik

Youtube-Video von Sean Carroll: https://youtu.be/dCrbOmBsTRk?feature=shared Vor der Quantenmechanik hatten wir so bis 1890 eine schöne heile Welt. Die klassische Mechnik mit wenigen kleineren ungelösten Fragen. Dachte man. Wir hatten Materie und Kräfte. Die Materie bestand aus Teilchen, die Kräfte waren Felder. Man musste also alle Teilchenarten finden und dann die Kraftfelder, die auf sie wirken, um das Verhalten der Teilchen mit Ort und Geschwindigkeit zu beschreiben. Dachte man. Dann kam aber die Quantenmechanik und wollte statt mit Ort und Geschwindigkeit alles mit Wellenfunktionen beschreiben. so eine Welle hätte aber keinen Ort.

Verständnis der Quantenmechanik

Die Formalismen der Quantenmechanik dienen lediglich als Mittel zur Vorhersage der relativen Häufigkeit von Messergebnissen; diese werden als die einzigen Elemente der Realität angesehen. Eine wirkliches “inneres” Verständnis der Quantenmechanik ist heute noch nicht vorhanden. Man kann zwar damit “rechnen”, weiss aber eigentlich nicht, was da “im Inneren” passiert. Link: https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics Zitat Richard Feynman: “I think I can safely say that nobody understands quantum mechanics.” Link: https://www.researchgate.net/post/I_think_I_can_safely_say_that_nobody_understands_quantum_mechanics_R_Feynman_If_that_statement_is_true_how_can_we_know_if_QM_is_true

Das Doppelspalt-Experiment mit Licht

Thomas Young (1773-1829) hat im Jahre 1802, das berühmte Doppelspalt-Experiment mit Licht unternommen. Es zeigt Interferenzmuster, was klar auf den Wellencharakter des Lichts hinweist. Damals war die gängige Lehre noch, dass Licht aus Teilchen besteht. Das Experiment gehört zu den Schlüsselexperimenten der Physik. Später hat man dieses Experiment auch mit Materiewellen, z.B. 1957 Claus Jönsson mit Elektronen, durchgeführt.

Das Plancksche Strahlungsgesetz

Max Planck (1858-1947) beschäftigte sich mit die Strahlung eines sog. “Schwarzen Strahlers”. Speziell ging es ihm darum, wie sich in Abhängigkeit von der Temperatur die abgestrahlte Energie über die Wellenlängen hin verteilt. Früheren Formeln zur Verteilung der Energie über die Wellenlängen z.B. von Wilhelm Wien und später von Rayleigh-Jeans waren nur Teilerfolge, da sie nur Näherungen für kleine Wellenlängen bzw. größere Wellenlängen waren. Über das Plancksche Strahlngsgesetz habe ich eine separaten Blog-Beitrag geschrieben. Quelle: http://www.quantenwelt.de/quantenmechanik/historisch/schwarze_korper.html

Plancks Quantenhypothese

Häufig hört man, dass aus Plancks Formel angeblich die Aussendung der Energie in sog. Quanten (ganzzahlige Vielfache  von h mal ν) folgt. Das kann man aber aus der Formel selbst überhaupt nicht ableiten. Vielmehr ist es so, dass Planck, nachdem er die Formel formuliert hatte, versuchte sie herzuleiten. Dabei modellierte er (angeblich) die elektromagnetische Strahlung (das Licht) als Teilchen, die sich wie ein Gas verhalten sollten. Die unterschiedlichen Geschwindigkeiten solcher Teilchen modelliert Planck als unterschiedliche Wellenlängen der Strahlung… Ein solches Teilchen sollte eine von der Frequenz seiner Strahlung abhängige Energie haben. Das ist die zentrale Formel (Quantenhypothese) von Planck:   \(E = h \cdot \nu \)

Der Photoelektrische Effekt

Einfacher für mich ist die Erklärung mit dem photoelektrischen Effekt. Nach Einstein (1879-1955) besteht das Licht aus Teilchen mit der Energie \(E = h \cdot \nu \), um den photoelektrischen Effekt zu erklären. Diese Lichtteilchen nennt Einstein Photonen. Allerdings haben die Photonen die Ruhemasse Null und bewegen sich in Vacuum immer mit der konstanten Geschwindigkeit der Lichtgeschwindigkeit c. Nach Einstein nimmt die Intensität von Licht dadurch zu, dass mehr Photonen mit der gleichen Energie pro Teilchen abgestrahlt werden. Der photoelektrische Effekt wirkt aber erst dann, wenn das einzelne Photon die erforderliche Energie hat, um Elektronen aus dem Basismaterial herauszulösen. Es ist also nicht eine bestimmte hohe Intensität des Lichts erforderlich, sondern eine bestimmte hohe Frequenz, um die Auslösearbeit zu leisten… Dieses Experiment zeigt den Teilchencharakter des Lichts mit Teilchen der Energie \( E = h \cdot \nu \).

Das Bohrsche Atommodell

Der Erfolg dieser Theorien brachte Niels Bohr (1885-1962) dazu, so eine Quantelung auch für die Enegieniveaus der Elektronen-Orbitale in seinem Atommodell anzunehmen. Man stellt sich dabei so ein Orbital als eine stehende Welle (s. Wellenfunktion) vor.

Compton-Streuung

Der US-amerikanische Physiker Arthur Compton (1892-1962) machte 1922 das berühmte Experiment zur Streuung von Photonen an Elektronen. Dabei war die Frequnz des gestreuten Lichts kleiner als die Frequenz des eingestrahlten Lichts. Diese Differenz in der Frequenz erklärte er durch die an das Elektron übertragene Energie: \( \Delta E = h \cdot \nu_1 \, – \, h \cdot \nu_2 \) Dieses Experiment zeigt erneut den Teilchencharakter des Lichts mit Teilchen der Energie \( E = h \cdot \nu \). Dieser Effekt der Frequenzveränderung ist bei sichtbarem Licht so klein, dass man ihn damals nicht messen konnte. Bei kurzwelligerem Licht (Röntgenstrahlen) ist der Effekt deutlich größer, aber man braucht ein genaues Verfahren zum Messen der Wellenlänge von Röntgenlicht. Letzteres machte Compton mit einem Bragg-Kristall.

Materiewellen

Nun ist aber nicht nur so. dass Wellen Teilchencharakter haben, sondern auch Teilchen können Wellencharakter haben. Zu diesem sog. Welle-Teilchen-Dualismus habe ich einen separaten Blog-Beitrag geschrieben.

Quantelung

Welche physikalischen Größen sollen den nun “gequantelt” sein; d.h. nur in ganzzahligen Vielfachen einer (kleinen) Elementargröße (=Quanten) vorkommen? Kommt jede physikalische Größe in “Quanten” oder nur bestimmte? Ich habe in Heidelberg gehört, dass die Quantelung nur für physikalische Größen zutrifft, die konjugiert zu einer periodischen Größe sind. Was immer das heissen mag…

Die Wellenfunktion

Zur Beschreibung quantenmechanischer Systeme (z.B. Photonen, Elektronen,…) verwendet die Quantenmechanik sog. Wellenfunktionen. Das sind komplexwertigen Funktionen, die vom Ortsvektor r und von der Zeit t abhängen können: \( \Psi(r,t): \mathbb{R}^3  \times \mathbb{R} \to \mathbb{C} \) Dabei, so sagt man, beinhaltet eine Wellenfunktion alle Informationen, um das betreffene quantenmechanische System zu beschreiben. Die Wellenfunktion selbst ist keine beobachtbare Größe, aber aus der Wellenfunktion lassen sich Wahrscheinlichkeitsdichten für alle denkbaren physikalischen Größen berechnen (mit Hilfe sog. Operatoren). Wie man zu einem quantenmechanischen System die zugehörige Wellenfunktion findet, ist eine besondere Geschichte, die zur Schrödinger Gleichung führt… Meine Hauptpunkte dazu:
  1. Wenn man eine Wellenfunktion hat, wie kommt man dann zu den Observablen? Stichworte: Operatoren, Korrespondenzprinzip,…
  2. Wie bekommt man überhaupt die Wellenfunktion zu einem quantenmechanischen System? Stichwort: Schrödinger,…

Die Schrödinger-Gleichung

Die Schrödinger-Gleichung ist eine partielle Differentialgleichung deren Lösungen die Wellenfunktionen des betrachteten quantenmechanischen Systems sind. Näheres dazu habe ich in einem separaten Blog-Artikel geschrieben.

Die Kopenhagener Deutung

Es war die Frage, was die Schrödingersche Wellenfunktion eigentlich bedeuten sollte…